

Absolutely Positively Wellington City Council Me Heke Ki Põneke

Western Wastewater Treatment Plant

Annual Resource Consents Report 2019/2020

This report has been prepared solely for the benefit of Wellington Regional Council.

No liability is accepted by this company or any employee or sub-consultant of this company with respect to its use by any other person.

This disclaimer shall apply notwithstanding that the report may be made available to other persons for an application for permission or approval or to fulfil a legal requirement.

Control Sheet

Document Title:	Western Wastewater Treatment Plant Annual Resource Consents Report 2019/2020
Prepared by:	Joemar Cacnio
Reviewed by:	Anna Hector
Authorised by:	Jeremy McKibbin

Document Control Register

Version	Status	Date	Details of Revision
0	Draft	21/07/2020	Draft for review
1	Final	27/07/2020	Reviewed by Anna Hector.

Executive Summary

This report has been prepared on behalf of the Wellington City Council (WCC) for compliance with the following resource consents:

WGN060283[35255]

This coastal permit allows WCC to continuously discharge disinfected secondary (fully treated) effluent to the Wellington South Coast coastal marine area (Cook Strait in the vicinity of the Karori Stream Mouth) via an existing outfall. The map reference for the discharge location is NZMS 260: R27; 504.836.

WGN060283[25227]

This coastal discharge permit allows WCC to occasionally discharge milli-screened (partially treated) effluent to the Wellington South Coast marine area (cook Strait in the vicinity of the Karori Stream Mouth) via an existing outfall during significant wet weather events. The map reference for the discharge location is NZMS 260: R27; 504.836.

WGN060283[35674]

This discharge permit allows WCC to occasionally discharge secondary treated and disinfected wastewater from the Western Wastewater Treatment Plant to Karori Stream during events when the stormwater tank is full and the flow to the plant exceeds 190L/s. The map reference for the discharge location is NZMS 260: R27; 2652332.5987157.

WGN060283[35675]

This discharge permit allows WCC to occasionally discharge milli-screened and settled wastewater from the Western WWTP to Karori stream during events when the stormwater tank is full and the flow to the plant exceeds 390L/s. The map reference for the discharge location is NZMS 260: R27; 2652332.5987157.

WGN060283[25230]

This discharge permit allows WCC to discharge contaminants to air from the operation of the Western WWTP.

The report will cover the period from 1 July 2019 to 30 June 2020.

Table of Contents

Control Sheet2
Executive Summary3
Resource Consent
WGN060283[35255]6
WGN060283[25227]6
WGN060283[35674]6
WGN060283[35675]6
WGN060283[25230]6
WGN060283 [35255]7
Condition (2)7
Condition (5)8
Condition (6)9
Condition (10)11
Section (i)12
Section (ii)12
Section (iii)13
Condition (16)14
Condition (20)
Section (a)17
Section (b)22
Section (c)27
Section (d)27
Section (e)27
Section (f)
Condition (23)
Condition (25)
WGN060283 [25227]
Condition (2)
Condition (5)
Condition (6)
Condition (7)
Condition (8)
Condition (12)

Condition (13)	
WGN060283 [35674]	43
Condition (2)	43
Condition (6)	44
Condition (7)	45
Condition (8)	
Condition (9)	47
Condition (15)	
Condition (16)	49
WGN 060283 [35675]	50
Condition (2)	50
Condition (5)	50
Condition (6)	51
Condition (7)	51
WGN060283 [25230]	52
Condition (3)	52
Condition (4)	53
Condition (5)	54
Condition (10)	55

Resource Consent

WGN060283[35255]

Effluent discharge from the Western WWTP is governed by the resource consent under the Greater Wellington Regional Council consent file number WGN060283 [35255]. In general, the consent allows the continuous discharge disinfected secondary (fully treated) effluent to the Wellington South Coast coastal marine area (Cook Strait in the vicinity of the Karori Stream Mouth) via an existing outfall. The following outlines the conditions of this resource consent required for this report.

WGN060283[25227]

In addition to the above resource consent, the discharge from the Western WWTP is governed by another resource consent under the Greater Wellington Regional Council consent file number WGN060283 [25227]. In general, the consent allows the occasional discharge of milli-screened (partially treated) effluent to the Wellington South Coast coastal marine area via an existing outfall during significant wet weather events. The following also outlines the conditions of this resource consent required for this report.

WGN060283[35674]

In addition to the above two (2) resource consents, the discharge from the Western WWTP is governed by another resource consent under the Greater Wellington Regional Council consent file number WGN060283 [35674]. In general, the consent allows the occasional discharge of secondary treated and disinfected wastewater from the Western WWTP to Karori Stream during events when the stormwater tank is full and the flow to the plant exceeds 190L/s. The following also outlines the conditions of this resource consent required for this report.

WGN060283[35675]

The fourth resource consent that governs the discharge from the Western WWTP is under the Greater Wellington Regional Council consent file number WGN060283 [35675]. In general, the consent allows for the occasional discharge of milli-screened and settled wastewater from the Western WWTP to Karori stream during events when the stormwater tank is full and the flow to the plant exceeds 390L/s. The following also outlines the conditions of this resource consent required for this report.

WGN060283[25230]

The final resource consent that governs the discharge from the Western WWTP is under the Greater Wellington Regional Council consent file number WGN060283 [25230]. In general, the consent allows the discharge of contaminants to air from the operation of the Western WWTP. The following also outlines the conditions of this resource consent required for this report.

WGN060283 [35255] Condition (2)

The rate of discharge shall not exceed 200 litres per second (L/s) or 17, 280 cubic metres per day (m³/day).

The limits from this condition have been added to WGN060283 [35255] Condition (6). The flow rates from have been reported in cubic meters per hour (m^3 /hour). Therefore the limit has been converted to 720 m^3 /hour.

Condition (5)

The permit holder shall establish a community liaison group (CLG) which shall act as a forum for consultation and liaison with the community and be used as a vehicle to provide information regarding the Western Wastewater Treatment Plant. The permit holder shall invite persons with an interest in participating in the CLG from the following groups:

- representatives of local Tangata Whenua;
- neighbouring and downstream landowners;
- ., residents of South Karori Road;
- a representative from the Makara-Ohariu Community Board;
- a representative of the West Wellington Environmental Protection Society Inc;
- a representative of the permit holder; and
- a representative of the plant operator.

The permit holder may invite any other parties to attend.

A meeting of the CLG shall be held at least once every calendar year. Minutes of any CLG meetings held shall be forwarded to the Manager, Environmental Regulation, Wellington Regional Council and the permit holder shall report in writing to the Manager, Environmental Regulation, Wellington Regional Council, by 31 July each year on any consultation and activities undertaken with regard to the CLG. A copy of this report shall be forwarded to the CLG members.

Note: The permit holder shall not be in breach of this condition if, after taking all reasonable measures, and its best endeavours, it has not been possible to gain the requisite participation.

The Western WWTP community liaison group met on 11th September 2019 which also discussed the Karori Wastewater Network Improvement Programme.

A full set of minutes was circulated to the group.

Condition (6)

The permit holder shall continuously monitor and record the flow rate and volume of treated wastewater entering the outfall pipeline and the flow rate and volume of the wastewater discharged to the South Coast to the satisfaction of the Wellington Regional Council. A summary of the records listing the daily discharge volumes and the minimum, average and maximum monthly volumes shall be forwarded to the Manager, Environmental Regulation, Wellington Regional Council at quarterly intervals in accordance with condition (19) of this permit.

Although the data requested in Condition (6) is not a requirement for the annual report, please find below a summary of the effluent flow from the treatment plant. The monthly average total daily discharge, average daily flow rate, minimum daily flow, and maximum daily flow.

Month	Average Daily Flow	Minimum Daily Flow	Maximum Daily Flow	Average Total Daily Volume
	m ³ /hour	m ³ /hour	m ³ /hour	m ³
July 2019	269	165	240	6450
August 2019	197	142	240	4720
September 2019	156	113	240	3753
October 2019	190	126	240	4558
November 2019	177	116	240	4244
December 2019	173	118	240	4142
January 2020	125	106	240	3008
February 2020	130	105	211	3116
March 2020	167	135	135	4005
April 2020	148	129	339	3434
May 2020	217	143	435	5216
June 2020	299	146	473	7176

Table 1: Monthly Treatment Plant Effluent Flow

Please note that the discharge limit specified in WGN060283 [35255], Condition (2) applies to the discharge from the effluent pipeline to the coastal marine area. It is not applicable to the discharge from the WWTP.

For all average daily, peak hourly and total daily flow rates for the WWTP effluent see Appendix i: Treatment Plant Effluent Flow Rate.

Although the data requested in Condition (6) is not a requirement for the annual report, please find below a summary of the effluent pipeline monthly average total daily discharge, average daily flow rate, minimum daily flow, and maximum daily flow.

Month	Average Daily Flow	Minimum Daily Flow	Maximum Daily Flow	Average Total Daily Volume
	m ³ /hour	m³/hour	m³/hour	m ³
July 2019	224	160	142	5363
August 2019	185	144	195	4436
September 2019	180	156	123	4316
October 2019	162	36	143	3887
November 2019	191	108	143	4568
December 2019	185	144	140	4441
January 2020	138	34	468	3322
February 2020	156	138	410	3751
March 2020	167	135	486	4005
April 2020	166	151	285	3992
May 2020	169	67	282	3784
June 2020	222	101	417	4355
Limit		720		17280

Table 2: Monthly Effluent Pipeline Flow

Please note that in June 2020, the total flow in the effluent pipeline flowmeter have no readings for several days due to severe weather conditions which did not allow the solar panel to charge the battery and the wind turbine had a loose connection to the battery. Immediate corrective action was not carried out due to health and safety risks.

Comparison between the treatment plant effluent and the effluent pipeline flow rates are difficult due to three reasons:

- i) The distance between the two flow meters;
- ii) The accuracy of each meter.
- iii) The time when the totalizer resets.

Because of these differences, the values are similar but do not match. For all average daily, peak hourly and total daily flow rates for the effluent pipeline see Appendix i: Effluent Pipeline Flow Rate.

Condition (10)

The wastewater discharged from the Western Wastewater Treatment Plant to the South Coast shall comply with the following effluent quality criteria:

(i) BOD₅

The geometric mean of 20 consecutive sampling results taken in any calendar month shall not exceed $20g/m^3$ and no more than two of those 20 sample results shall exceed $50g/m^3$.

(ii) Suspended solids

The geometric mean of 20 consecutive sampling results shall not exceed 30g/m³ and no more than two in any 20 consecutive sample results shall exceed 80g/m³.

(iii) Faecal Coliforms

The geometric mean of 20 consecutive sampling results taken in any calendar month shall not exceed 200 colony forming units per 100mL and no more than two of those 20 sample results shall exceed 2,000 colony forming units per 100 mL.

Compliance with the effluent quality criteria shall be determined from the results of wastewater monitoring undertaken in accordance with conditions (9) (a) and (9) (b) of this permit.

Note: When the consent holder takes more than 20 samples during any calendar month, the geometric mean calculated for condition 10 must only be of the first 20 consecutive samples. All samples after the 20th sample in any calendar month shall be disregarded for the geometric mean calculation. All sample results are to be provided to Wellington Regional Council in the quarterly report required by condition 19.

Section (i)

Below is a summary of the geometric mean and percent compliance for the Biological Oxygen Demand.

	Biological Oxy	ygen Demand
Date	Geometric Mean	%Compliance
	g/m³	%
31 July 2019	3	100
31 August 2019	4	100
30 September 2019	5	100
31 October 2019	4	100
30 November 2019	6	100
31 December 2019	5	100
31 January 2020	5	100
28 February 2020	5	100
31 March 2020	9	100
30 April 2020	11	100
31 May 2020	18	75
30 June 2020	12	95
Limits	20	90

 Table 3: Carbonaceous Biological Oxygen Demand Geometric Mean and % Compliance

For all daily Biological Oxygen Demand results please see Appendix i: Effluent Biological Oxygen Demand Results. The analytical results were in compliance for the 2019/2020 reporting period except for May 2020 wherein the facility had more than two samples greater than 50 g/m³. An investigation report has been forwarded to GWRC regarding the non-compliance.

Section (ii)

Below is a summary of the geometric mean and percent compliance for the Suspended Solids.

	Suspend	ed Solids
Date	Geometric Mean	%Compliance
	g/m³	%
31 July 2019	7	100
31 August 2019	7	100
30 September 2019	7	100
31 October 2019	7	100
30 November 2019	9	100
31 December 2019	7	100
31 January 2020	8	100
28 February 2020	7	100
31 March 2020	14	100
30 April 2020	12	100
31 May 2020	33	80
30 June 2020	22	85
Limits	30	90

Table 4: Suspended Solids Geometric Mean and %Compliance

For all daily effluent Suspended Solids results please see Appendix i: Suspended Solids Results. The analytical results were in compliance for the 2019/2020 reporting period except for May and June 2020 wherein the facility had more than two samples greater than 80 g/m³ for the reporting period. GWRC had been informed via email last 22nd May and 6th July respectively for these exceedances. Veolia is taking necessary corrective measures to mitigate the noncompliance.

Section (iii)

Below is a summary of the geometric mean and percent compliance for the Faecal Coliforms.

	Faecal C	oliforms
Date	Geometric Mean	% Compliance
	g/m³	%
31 July 2019	10	100
31 August 2019	18	100
30 September 2019	33	100
31 October 2019	29	100
30 November 2019	34	95
31 December 2019	8	95
31 January 2020	23	100
28 February 2020	41	100
31 March 2020	122	90
30 April 2020	27	100
31 May 2020	6	100
30 June 2020	3	100
Limits	200	90

Table 5: Faecal Coliforms Results, Geometric Mean, and % Compliance

For all daily effluent Faecal Coliform results please see Appendix i: Effluent Faecal Coliform Results. All analytical results were in compliance for the 2019/2020 reporting period.

Condition (16)

The permit holder shall collect representative coastal water samples from knee deep water at the following locations, once each month for five months through November to March inclusive (the bathing season) each year, for the duration of this permit:

- a) 100m SE of the outfall (map reference NZMS 260: R27; 504.835)
- b) 200m SE of the outfall (map reference NZMS 260: R27; 504.834)
- c) The Karori Stream, above the tidal influence
- d) 100m NW of the mouth of the Karori Stream

Sampling shall be undertaken during dry, settled weather where practicable. Each of the water samples shall be analysed for faecal coliform and enterococci bacteria (cfu/100ml). The time of the sample collection, together with the weather and tidal conditions, observations of the sea state, stream colour and location of stream mouth (if at all) shall be recorded and reported with the analytical results.

Water samples taken during the months of January to March inclusive, shall also be analysed for the following parameters:

Ammoniacal nitrogen	g/m ³
Nitrite nitrogen	g/m ³
Nitrate nitrogen	g/m ³
Dissolved reactive phosphorus	g/m ³

The permit holder shall provide the results to the Manager, Environmental Regulation, Regional Council, by 30 April each year (as part of the quarterly report required by condition (19) of this permit), or on request.

Following is a summary of the analytical results for the November to March monthly coastal water samples.

			Ka	arori Stre	eam abo	ve Tidal I	nfluence			100m North West of Karori Stream Mouth								
Date	Enterococci	Faecal Coliforms	Ammoniacal Nitrogen	Nitrite Nitrogen	Nitrate Nitrogen	Dissolved Reactive Phosphorus	Colour of Stream	Location of Stream Mouth	Weather	Enterococci	Faecal Coliforms	Ammoniacal Nitrogen	Nitrite Nitrogen	Nitrate Nitrogen	Dissolved Reactive Phosphorus	Sea Conditions	Tide	Weather
dd/mm/ yyyy	100cfu/mL	100cfu/mL	g/m ³	g/m ³	g/m ³	g/m ³				100cfu/mL	100cfu/mL	g/m ³	g/m ³	g/m ³	g/m ³			
								Alongside Outfall		4	4	N/A	N/A	N/A	N/A	Calm	Low	Clear
29/11/2019	4	50	N/A	N/A	N/A	N/A	Clear		Clear									
31/12/2019	12	64	N/A	N/A	N/A	N/A	Brown	Alongside Outfall	Clear	4	4	N/A	N/A	N/A	N/A	Calm	High	Clear
31/01/2020	12	76	0.01	0.29	0.01	0.022	Brown	Alongside Outfall	Overcast	12	12	0.01	0.10	0.10	0.014	Calm	Half	Overcast
01,01/2020		,0	0.01	0.25	0.01	0.022	DIOWII	Alongsido Outfall	Crercust	4	4	0.16	0.10	0.16	0.022	Colm	Half	Clear
26/02/2020	8	88	0.49	0.01	0.49	0.026	Clear	Alongside Outrall	Clear	4	4	0.10	0.10	0.10	0.022	Callfi	ndli	Ciedi
12/3/2020	60	96	0.01	1.00	0.10	0.018	Ebb	High	Cool	4	4	0.01	1.00	0.01	0.02	Ebb	High	Cool

	100m South East of Western Outfall									200m South East of Western Outfall								
Date	Enterococci	Faecal Coliforms	Ammoniacal Nitrogen	Nitrite Nitrogen	Nitrate Nitrogen	Dissolved Reactive Phosphorus	Sea Conditions	Tide	Weather	Enterococci	Faecal Coliforms	Ammoniacal Nitrogen	Nitrite Nitrogen	Nitrate Nitrogen	Dissolved Reactive Phosphorus	Sea Conditions	Tide	Weather
dd/mm/yyyy	100cfu/mL	100cfu/mL	g/m³	g/m³	g/m ³	g/m³				100cfu/mL	100cfu/mL	g/m³	g/m³	g/m ³	g/m³			
29/11/2019	4	4	N/A	N/A	N/A	N/A	Calm	Low	Clear	4	4	N/A	N/A	N/A	N/A	Calm	Low	Clear
31/12/2019	4	4	N/A	N/A	N/A	N/A	Calm	High	Clear	4	4	N/A	N/A	N/A	N/A	Calm	High	Clear
31/01/2020	4	4	0.01	0.10	0.10	0.014	Calm	Half	Overcast	8	4	0.01	0.10	0.10	0.016	Calm	Half	Overcast
26/02/2020	4	4	0.10	0.10	0.10	0.02	Calm	Half	Clear	4	4	0.10	0.10	0.10	0.018	Calm	Half	Clear
12/3/2020	8	4	0.01	1.00	0.10	0.015	Ebb	High	Cool	8	28	0.01	1.00	0.10	0.018	Ebb	High	Cool

Table 6: Quarterly Effluent Sample Results

Please note that bathing beach guidelines were used to generate the colouring for the Enterococci samples. Because there are no bathing beach guidelines for faecal coliforms, fresh water guidelines were applied. The following are the limits for both bacterial species:

Pactoria Species	Amber Limit	Red Limit				
Bacteria Species	cfu/100mL	cfu/100mL				
Enterococci	140	280				
Faecal Coliforms	260	550				

All data for the 2019/2020 reporting year was compliant.

Condition (20)

The permit holder shall provide to the Manager, Environmental Regulation, Wellington Regional Council an Annual Assessment and Analysis Report for the period 1 July to 30 June by 31 July each year summarising compliance with the conditions of this permit. This report shall include, but not be limited to the following:

- a) A summary of all monitoring undertaken in accordance with the conditions of this permit and a critical analysis of the information in terms of compliance and adverse environmental effects;
- b) A comparison of data with previously collected data in order to identify any emerging trends;
- c) Comments on compliance with the conditions of this permit;
- d) Any reasons for non-compliance or difficulties in achieving compliance with the conditions of this permit;
- e) Any measures that have been undertaken to improve the environmental performance of the wastewater treatment and disposal system;
- f) Any other issues considered to be important;

Section (a)

All monitoring performed at the Western WWTP has been provided in the previous sections of this report under the designated resource consent conditions. The following is a summary of the monitoring parameters, the resource consent condition the data is listed under, the monitoring frequency, the limits for each parameter, and compliance with the resource consent:

Monitoring Parameter	WGN060283[35255] Condition	Monitoring Frequency	Limits	Compliance
WWTP Effluent Flow Rate	(6)	Daily	200L/s 17,280m³/day	Compliant
Biological Oxygen Demand	(10)(i)	20 samples/month	Geometric Mean < 20g/m ³ No more than two samples < 50g/m ³	11 out of 12 months Compliant
Suspended Solids	(10)(ii)	20 samples/month	Geometric Mean < 30g/m ³ No more than two samples < 80g/m ³	10 out of 12 months Compliant
Faecal Coliforms	(10)(iii)	20 samples/month	Geometric Mean < 200cfu/100mL 95th Percentile < 2000cfu/100mL	Compliant
Enterococci		Monthly (November – March)	N/A	Compliant
Faecal Coliforms		Monthly (November – March)	N/A	Compliant
Ammoniacal nitrogen	(10)	Monthly (January – March)	N/A	Compliant
Nitrite nitrogen	(10)	Monthly (January – March)	N/A	Compliant
Nitrate nitrogen		Monthly (January – March)	N/A	Compliant
Dissolved reactive phosphorus		Monthly (January – March)	N/A	Compliant

Table 7: Summary of Continuous Discharge Monitoring Undertaken at Western WWTP

Please see the listed sections for the summary. Note that the geometric mean and percent compliance calculation are performed on the first 20 samples for each month as of the 2nd September 2015.

Statistical analysis was performed on the data from each monitoring parameter. The following is a summary of the analysis performed on the daily effluent flow data:

		WWTP Effluent Flow Rate	9		
Month	Average	Minimum	Maximum		
	m³/hr	m³/hr	m³/hr		
July 2019	269	165	240		
August 2019	197	142	240		
September 2019	156	113	240		
October 2019	190	126	240		
November 2019	177	116	240		
December 2019	173	118	240		
January 2020	125	106	240		
February 2020	130	105	211		
March 2020	150	110	192		
April 2020	148	129	339		
May 2020	217	143	435		
June 2020	299	146	473		

 Table 8: Total Daily Plant Effluent Flow Month Average, Minimum, and Maximum

	l	Effluent Pipeline Flow Rat	te		
Month	Average	Minimum	Maximum		
	m³/hr	m³/hr	m³/hr		
July 2019	224	160	142		
August 2019	185	144	195		
September 2019	180	156	123		
October 2019	162	36	143		
November 2019	191	108	143		
December 2019	185	144	140		
January 2020	138	34	468		
February 2020	156	138	410		
March 2020	167	135	486		
April 2020	166	151	285		
May 2020	169	67	282		
June 2020	222	101	417		
Limit		720			

Table 9: Total Daily Effluent Pipeline Flow Month Average, Minimum, and Maximum

Comparison between the treatment plant effluent and the effluent pipeline flow rates are difficult due to three reasons:

- i) The distance between the two flow meters;
- ii) The accuracy of each meter; and
- iii) The time when the totalizer resets.

Because of these differences, the values do not match. Instead of comparing the numerical values, a comparison of the flow trends should be used to determine if there are any issues.

The following is a summary of the monthly geometric mean and percent compliance for Effluent BOD5, Suspended Solids, and Faecal Coliform results:

Parameters	Units	Limits	Average	Minimum	Maximum
BOD₅ Geometric Mean	g/ m³	20	7	3	18
SS Geometric Mean	g/ m³	30	12	7	33
FC Geometric Mean	cfu/100mL	200	30	3	122

Parameters	Units	Minimum Requirement	Average	Minimum	Maximum
BOD₅ %Compliance	%	90	98	75	100
SS %Compliance	%	90	97	80	100
FC %Compliance	%	90	98	90	100

Table 10: Analysis of BOD₅, Suspended Solids, Faecal Coliform Compliance Results

As shown in the tables above, the monthly geometric mean values for Effluent BOD and faecal coliform are below the consent limits while the effluent suspended solids have exceeded the limit during FY2019/2020. Percent compliance for effluent BOD5 and suspended solids also failed to be maintained within the minimum requirement of 90% compliance in FY2019/2020. The non-compliances can be attributed to the challenges experienced by the plant in the last quarter of FY2019/2020. Effluent Faecal coliform has maintained the effluent percent compliance requirement this reporting period.

Parameters	Unite	Karori Str	eam above Tidal	l Influence	100m North	100m North West of Karori Stream Mouth			uth East of Weste	ern Outfall	200m South East of Western Outfall			
Parameters	Units	Average	Minimum	Maximum	Average	Minimum	Maximum	Average	Minimum	Maximum	Average	Minimum	Maximum	
Enterococci	cfu/100mL	19.2	4	60	6.00	4.00	12.00	4.80	4.00	8.00	5.60	4.00	8.00	
Faecal Coliforms	cfu/100mL	74.8	50	0.01	6.00	4.00	12.00	4.00	4.00	4.00	8.80	4.00	28.00	
Ammoniacal Nitrogen	g/ m ³	0.17	0.01	0.49	0.06	0.01	0.16	0.04	0.01	0.10	0.04	0.01	0.10	
Nitrite Nitrogen	g/ m³	0.43	0.01	1	0.40	0.10	1.00	0.40	0.10	1.00	0.40	0.10	1.00	
Nitrate Nitrogen	g/ m ³	0.2	0.01	0.49	0.09	0.01	0.16	0.10	0.10	0.10	0.10	0.10	0.10	
Dissolved Reactive Phosphorus	g/ m ³	0.02	0.02	0.03	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.02	0.02	

The following is a summary of the results from the coastal monitoring program performed during the months of November to March for FY2019/2020:

Table 11: Coastal Monitoring

From the above tables, the monitoring parameters do not vary throughout the year results are low.

Section (b)

A comparison of data was made between 2019/2020 reporting period and the previous four (4) years. The following section summarises that comparison.

The following is a comparison of the monthly average total daily effluent flow rate between the previous and current reporting period:

Month		Final Efflue	ent Total Daily	⁷ Flow (m ³)	
wonth	2015/2016	2016/2017	2017/2018	2018/2019	2019/2020
July	5125	4185	5986	6342	5363
August	3917	5234	5451	4941	4436
September	4303	5304	4848	4824	4316
October	2683	5267	4045	3824	3887
November	2750	7546	3322	4768	4568
December	2582	4091	4091 2894		4441
January	3241	3530	3049	3053	3322
February	3396	3952	3944	2991	3751
March	3469	3876	4798	3446	4005
April	3189	5655	4897	5379	3992
May	4265	4282	5405	3968	3784
June	4814	4780	7273	4947	4355
Limit			17280		

Table 12: Final Effluent Pipeline Monthly Average Total Daily Flow

Chart 1: Final Effluent Pipeline Monthly Average Total Daily Flow

The total daily flows are similar over the 5 year period. There is a trend of the total daily effluent flow decreases between the months of November to March. This trend coincides with the summer months which have less rainfall than the winter months.

The following is a comparison of the effluent BOD monthly geometric mean between the previous 4 years and the current reporting period:

Poporting	cE	BOD₅ Geo	ometric M	1ean (g/n	n³)
Period	2015/ 2016	2016/ 2017	2017/ 2018	2018/ 2019	2019/ 2020
July	9	8	3	3	3.0
August	9	6	6	4	3.9
September	9	5	8	6	5.0
October	9	4	11	10	4.0
November	4	4	9	8	5.7
December	5	4	5	9	5.4
January	7	5	4	7	5.0
February	8	4	10	6	4.7
March	8	5	9	5	9.0
April	5	4	7	5	11
May	4	6	4	5	18
June	4	6	3	3	12
Limit			20		

 Table 13: Final Effluent BOD5 Geometric Mean

Chart 2: Final Effluent BOD5 Geometric Mean

The BOD₅ results are below the 20 g/m³ geometric mean limit for the five year period which signifies the stability of the process. There were some spikes in May 2020 results that made the geometric mean approach the limit. Ninety percent of the monthly geometric mean values in the five year period are below the 9.1 g/m³

Departing		SS Geom	etric Me	an (g/m³))
Period	2015/	2016/	2017/	2018/	2019/
luby	10	2017	2018	2013	7.0
July	10	5	0	/	7.0
August	11	/	6	6	7.0
September	9	7	10	9	6.5
October	14	7	9	12	7
November	7	6	14	12	9
December	7	7	11	12	7.4
January	11	7	8	16	8.0
February	8	7	8	10	6.8
March	8	8	17	8	13.7
April	7	6	17	8	12
May 7		7	9	8	33
June	8	7	8	7	22
Limit			30		

The following is a comparison of the effluent suspended solids monthly geometric mean between the previous 4 years and the current reporting period:

Table 14: Final Effluent Suspended Solids Geometric Mean

Chart 3: Final Effluent Suspended Solids Geometric Mean

The suspended solids results are below the 30 g/m^3 geometric mean limit for the five year period which signifies the stability of the process. There were some spikes in May 2020 results that made the geometric mean go beyond the limit. Ninety percent of the monthly geometric mean values are below 14 g/m³.

Bonorting		FC Geom	etric Me	an (g/m³))
Poriod	2015/	2016/	2017/	2018/	2019/
Periou	2016	2017	2018	2019	2020
July	13	17	7	10	10
August	40	10	5	9	18
September	32	9	10	8	33
October	56	8	11	31	29
November	35	8	85	26	34
December	45	9	37	29	8
January	44	7	14	44	23
February	64	11	76	20	41
March	34	11	23	9	122
April	41	21	19	10	27
May	7	14	15	4	6
June	11	13	7	11	3
Limit			200		

The following is a comparison of the effluent faecal coliform monthly geometric mean between the previous 4 years and the current reporting period:

Table 15: Final Effluent Faecal Coliforms Geometric Mean

Chart 4: Final Effluent Faecal Coliforms Geometric Mean

The faecal coliform results are below the 2000 g/m³ geometric mean limit for the five year period which signifies the stability of the process. Ninety percent of the monthly geometric mean values are below 44.1 g/m^3 .

		Kar	Karori Stream above Tidal Influence					100m North West of Karori Stream Mouth				100m South East of Western Outfall				200m South East of Western Outfall					
Parameter	Units	2015/ 2016	2016/ 2017	2017/ 2018	2018/ 2019	2019/ 2020	2015/ 2016	2016/ 2017	2017/ 2018	2018/ 2019	2019/ 2020	2015/ 2016	2016/ 2017	2017/ 2018	2018/ 2019	2019/ 2020	2015/ 2016	2016/ 2017	2017/ 2018	2018/ 2019	2019/ 2020
Enterococci	cfu/100mL	22	6	501	48	19.2	6	5	23	8	5.6	4	6	12	4	4.8	4	4	23	40	5.6
Faecal Coliforms	cfu/100mL	28	15	294	134	74.8	4	7	10	10	5.6	4	4	7	4	4	4	4	30	13	8.8
Ammoniacal Nitrogen	g/ m³	0.010	0.690	0.010	0.015	0.17	0.013	0.760	0.010	0.010	0.06	0.027	0.890	0.020	0.017	0.04	0.030	0.790	0.020	0.020	0.04
Nitrite Nitrogen	g/ m³	0.010	0.010	0.010	0.010	0.4333	0.400	0.040	0.100	0.100	0.4	0.400	0.010	0.100	0.100	0.4	0.400	0.030	0.100	0.100	0.4
Nitrate Nitrogen	g/ m³	0.2700	0.0100	0.7200	0.4500	0.2	0.0967	0.0800	0.1300	0.1300	0.09	0.1000	0.0830	0.0700	0.1000	0.1	0.0967	0.0800	0.0900	0.1000	0.1
Dissolved Reactive Phosphorus	g/ m³	0.0280	0.0390	0.0300	0.0310	0.022	0.0500	0.0320	0.0200	0.0200	0.0187	0.0500	0.0240	0.0200	0.0240	0.0163	0.0500	0.0250	0.0200	0.0320	0.0173

The following is a comparison of the monthly coastal waters samples between the previous and current reporting period:

Table 16: Coastal Monitoring

The results were consistent throughout the 5 year period.

Section (c)

As noted in WGN060283 [35255], Condition (20) Section (a), Table 6 the facility had received a noncompliance rating for condition 10 due to effluent quality breaches in May and June 2020. Corrective actions is currently progressing to address the issue.

Section (d)

The non-compliance in condition 10 of the permit in May 2020 and June 2020 can be attributed to the unusual circumstances (i.e. COVID19 pandemic and unusually longer wet weather events) which made the performance management of the facility quite challenging. Wellington Water and Veolia are currently progressing with corrective measures to address this compliance issues.

Section (e)

Inflow and infiltration issues also affected the performance of the plant during wet weather events. The progress in the inflow and infiltration reduction program can be checked appendix IV. Wellington Water and Veolia currently reviews the operation of the treatment plant to ensure the continuous improvement of its environmental performance.

Section (f)

Wellington Water clarified with GWRC regarding the interpretation of WGN060283 [35255] condition 10 and 11 last May 2020. The following actions have been agreed upon:

- The assessment of compliance to condition 10 needs to be assessed in accordance to condition wording regardless of the compliance assessment in the past. This would result to omission of the 95th percentile assessment in the effluent quality compliance.
- In condition 11, exceedance of the geometric mean limit will trigger the notification to GWRC.

Condition (23)

The permit holder shall submit an annual report for the main outfall pipeline, which addresses activities undertaken during the previous year, to the Manager, Environmental Regulation, Wellington Regional Council and members of the CLG, by 31 July each year.

This report shall include, but not be limited to, the following elements:

- a) details of the location, extent and duration of any leakage or faults, and the timing, nature and success of remedial action taken to remedy the leaks or faults;
- b) details of any other works (including any repairs and replacements) undertaken during the past year; and
- c) any work planned in the next 12 months to repair or replace the pipeline.

A report regarding the main outfall pipeline can be found in Appendix iii: Western Treatment Plant: Annual Outfall Pipeline Report_2019 -2020.

Condition (25)

The permit holder shall collect representative water samples from the Karori Stream at the following locations, once every fortnight for the duration of this permit:

a) Karori Stream at Friend Street (map reference NZMS 260: R27; 554.901)

b) Karori Stream at Campbell Street (map reference NZMS 260: R27; 554.900)

c) Karori Stream at South Karori Road (map reference NZMS 260: R27; 540.880)

d) Karori Stream approximately 100 metres upstream of the Western Treatment Plant (map reference NZMS 260: R27; 523.872)

e) Karori Stream 100 metres approximately downstream of the Western Treatment Plant (map reference NZMS 260: R27; 523.871)

The water samples shall be analysed for faecal coliforms (cfu/100mL). The time of the sample collection, together with the weather conditions shall be recorded and reported with the analytical results.

The permit holder shall provide the results of this monitoring to the Manager, Environmental Regulation,

Wellington Regional Council, quarterly, in accordance with the requirements of condition (19) of this permit, or on request.

The Karori Stream monitoring records can be found in Appendix v of this report.

WGN060283 [25227]

Condition (2)

This permit shall only be exercised when the sewage inflow to the treatment plant exceeds 190 litres per second (L/s), and the 1000 m³ storage tank is full.

There were eight bypass events that occurred in the 2019/2020 reporting year. These events had an influent flow rate to the Western WWTP greater than 190L/s and the 1000m³ storage tank was full. This resource consent can be applied.

Condition (5)

The permit holder shall monitor and record the time, flow rate, duration and total volume of the bypass discharges into the coastal marine area, and shall report the results to the Manager, Environmental Regulation, Wellington Regional Council, within 10 working days of the overflow event occurring.

The permit holder shall maintain an incident log containing the details of each bypass discharge and make it available to the public or the Manager, Environmental Regulation, Wellington Regional Council upon request.

The following is a summary of the bypass events from the Western WWTP for the 2019/2020 reporting period:

Date	Date of Notification	Duration	Average Bypass Flow	Max Bypass Flow Rate	Total Volume of Bypass	Consented	Cause
dd mmm yyyy	dd mmm yyyy	hrs/mins	L/s	L/s	m ³	Y/N	
04 Jul 2019	04 Jul 2019	01hr 18m	23	43	108	Y	Storm Event
17 Aug 2019	17 Aug 2019	00hr 59m	11	20	39	Y	Storm Event
11 Nov 2019	11 Nov 2019	04hr 5m	0.5	11.5	30	Y	Storm Event
29 Mar 2020	29 Mar 2020	05hr 48m	107	237	2,182	Y	Storm Event
06 May 2020	06 May 2020	01hr 57m	24	53	172	Y	Storm Event
05 Jun 2020	05 Jun 2020	04hr 40m	34	34	573	Y	Storm Event
18 Jun 2020	18 Jun 2020	32hr 48m	144	238	16,988	Y	Storm Event
20 Jun 2020	20 Jun 2020	19hr 00m	13	34	952	Y	Storm Event

Table 17: Coastal Marine Bypass Events from 2019/2020 Reporting Period

Condition (6)

The permit holder shall submit to the Manager, Environmental Regulation, Wellington Regional Council the amount of rainfall recorded in each hour at Karori Reservoir rain-gauge for each of the 7 days preceding each overflow event in the annual report required by condition (10) of this permit.

The bypass events occurred on several days during the reporting period. The following tables are of the hourly rainfall rate for the seven days prior to the overflow events. All rainfall data is obtained from the GWRC Hilltop system. The original rain gauge used was Karori Stream at Duthie Street. This site was decommissioned in 2019. The current rain gauge used is Karori Sream at Samuel Marsden School.

Timo	Rainfall (mm)								
Time	27/6/2019	28/6/2019	29/6/2019	30/6/2019	1/7/2019	2/7/2019	3/7/2019		
00:00	0	0	0	0	0	0	0		
01:00	0	0	0	0	0	0	0		
02:00	0	0	0	0	0	0	0		
03:00	0	0	0	0	0	0	0		
04:00	0	0	0	0	0	0	0		
05:00	0	0	0	0	0	0	0		
06:00	0	0	0	0	0	0	0		
07:00	0	0	0	0	0	0	0		
08:00	0.2	0	0	0	0	0	0		
09:00	0	0.2	0	0	0	0	0		
10:00	0	0	0	0	0	0	0		
11:00	0	0	0	0	0	0	0		
12:00	0	0	0	0	0	0	0		
13:00	0	0	0	0	0	0	1.2		
14:00	0	0	0	0	0	0	2.1		
15:00	0	0	0	0	0	0	2.3		
16:00	0	0	0	0	0	0	1.6		
17:00	0	0	0	0	0	0	2.5		
18:00	0	0	0	0	0	0	6.3		
19:00	0	0	0	0	0	0	0.4		
20:00	0	0	0	0	0	0	0.8		
21:00	0	0	0	0	0	0	2.4		
22:00	0	0	0	0	0	0	6.3		
23:00	0	0	0	0	0	0	9.9		

Table 18: Rainfall Data for 7 Days Prior to 04/07/2019 Bypass Event

Time	Rainfall (mm)									
Time	10/8/2019	11/8/2019	12/8/2019	13/8/2019	14/8/2019	15/8/2019	16/8/2019			
00:00	0	0	0	0	0	0	0.6			
01:00	0	0	0	0	0	0	1.4			
02:00	0	0	0	0	0	0	1.2			
03:00	0	0	0	0	0.2	0	2.9			
04:00	0	0	0	0	0.4	0	3.7			
05:00	0	0	0	0	0	0	5.3			
06:00	0	0	0	0	0	0	0.3			
07:00	0	0	1	0	0	0	0.2			
08:00	0	0	1.2	0	2.6	0	1.6			
09:00	0	0	0	0	14.2	0	3.4			
10:00	0	0	0	0	8.3	0	1.4			
11:00	0	0	0	0	2.1	0	0			
12:00	0.8	0	0	0	0	0	0			
13:00	0	0	0	0	0.2	0	0			
14:00	0	0	0	0	0	0	0.2			
15:00	0	0	0	0	0	0	0			
16:00	0	0	0.6	0	0	0	0			
17:00	0	0	1.4	0	0	0	0			
18:00	0	0	0	0	0	0	0			
19:00	0.657	0	0	0	0	0	0			
20:00	0.343	0	0	0	0	0	0			
21:00	0	0	0	0	0	0	0			
22:00	0	0	0	0	0	0	0			
23:00	0	0	0	0	0	0	0			

Table 19: Rainfall Data for 7 Days Prior to 17/08/2019 Bypass Event

Time	Rainfall (mm)									
Time	5/11/2019	6/11/2019	7/11/2019	8/11/2019	9/11/2019	10/11/2019	11/11/2019			
00:00	0	0	0	0	0	0.2	8.4			
01:00	0	0	0	0	0	0	0.2			
02:00	0	0	0	0	0	0	1.7			
03:00	0	0	0	0	0	0	3.5			
04:00	0	0	0	0	0	0	10.2			
05:00	0	0	0	0	0	0	0.4			
06:00	0	0	0	0	0	0	3.4			
07:00	0	0	0	0	0	0.8	1.2			
08:00	0	0	0	0	0	0.8	1.9			
09:00	0	0	0	0	0	9.6	1.9			
10:00	0	0	0	0	0	0.4	4.9			
11:00	0	0	0	0	5.0	4.5	3.5			
12:00	0	0	0	0	0.95	1.1	1.3			
13:00	0	0	0	0	0	3.3	0.6			
14:00	0	0	0	0	0	0.1	0			
15:00	0	0	0.2	0	0	0.2	0			
16:00	0	0	0	0	0	0	0			
17:00	0	0	0	0	0	0	0			
18:00	0	0	0	0	0	0.6	0			
19:00	0	0	0	0	0	0	0			
20:00	0	0	0	0	0	0	0			
21:00	0	0	0	0	0	0.2	0			
22:00	0	0	0	0	0	0	0			
23:00	0	0	0	0	0	11.2	0			

Table 20: Rainfall Data for 7 Days Prior to 11/11/2019 Bypass Event

Time	Rainfall (mm)									
Time	22/03/2020	23/03/2020	24/03/2020	25/03/2020	26/03/2020	27/03/2020	28/32020			
00:00	0	0	5.9	0	0	0	3.4			
01:00	0	0	1.9	0	0	0	2.8			
02:00	0.2	0	0	0	0	0	1.2			
03:00	0.8	0	0.2	0	0	0	1.4			
04:00	1.188	0	1.0	0	0	1.5	1.4			
05:00	0.412	0	1.0	0	0	3.3	2.9			
06:00	0	0	0.4	0	0	1.8	1.9			
07:00	0	0	0	0	0	0.2	0.4			
08:00	0	0	0	0	0	0	0			
09:00	0	0	0	0	0	0	0.2			
10:00	0	0	0	0	0	0	1.0			
11:00	0	0	0	0	0	0	2.6			
12:00	0	0	0	0	0	0	3.3			
13:00	0	0	0	0	0	0	3.2			
14:00	0	0	0	0	0	0	1.1			
15:00	0	0	0	0	0	0	0.4			
16:00	0	0	0	0	0	0.2	0			
17:00	0	0	0	0	0	0	0			
18:00	0	0	0	0	0	2.6	0			
19:00	0	0	0	0	0	2.1	0			
20:00	0	0	0	0	0	5.8	0			
21:00	0	0.2	0	0	0	4.7	0.2			
22:00	0	0	0	0	0	2.3	0			
23:00	0	1	0	0	0	6.5	0.7			

Table 21: Rainfall Data for 7 Days Prior to 29/03/2020 Bypass Event

Time	Rainfall (mm)								
Time	29/04/2020	30/04/2020	1/05/2020	2/05/2020	3/05/2020	4/05/2020	5/5/2020		
00:00	0	0	0	0	0	0	0		
01:00	0	0	0	0	0	0	0		
02:00	0	0	0	0	0	0	0		
03:00	0	0	0	0	0	0	0		
04:00	0	0	0	0	0	0	3.6		
05:00	0	0	0	0	0.2	3.8	0.2		
06:00	0	0	0	0	0.8	2.8	0.6		
07:00	0	0	0	0	0.2	1.445	0.4		
08:00	0	0	0	0	0	0	0.6		
09:00	0	0	0	0	0	0	0.2		
10:00	0	0	0	0	0	0	0.2		
11:00	0	0	0	0	0	0	1.2		
12:00	0	0	0	0	6.0	0	0		
13:00	0	0	0	0	0.6	0	0.4		
14:00	0	0.2	0	0	0	0	4.4		
15:00	0	0	0	0	0.8	0	8.5		
16:00	0	0	0	0	4.2	0	6.9		
17:00	0	0	0	0	20.5	0	5.4		
18:00	0	0	0	0	9.5	0.2	0.2		
19:00	0	0	0	0	0.6	0	0.2		
20:00	0	0	0	0	0	0	0.2		
21:00	0	0	0	0	0	0	0		
22:00	0	0	0	0	0	0.2	0.2		
23:00	0	0	0	0	0	0	0.2		

Table 22: Rainfall Data for 7 Days Prior to 06/05/2020 Bypass Event

Time	Rainfall (mm)									
Time	29/05/2020	30/05/2020	31/05/2020	1/06/2020	2/06/2020	3/06/2020	4/6/2020			
00:00	0	0	0	0	0	0	0			
01:00	0	0	0	0	0	0	2.5			
02:00	0	0	0	0	0	0	1.5			
03:00	0	0	0	0	0	0	0			
04:00	0	0	0	0	0.2	0	0			
05:00	0	0	0	0	0.4	0	0			
06:00	0	0	0	0	0	0	0.2			
07:00	0	0	0	0	0	0	0			
08:00	0	0	0	0	0	0	0			
09:00	0	0	0	0	0	0	0			
10:00	0	0	0	0	0	0	0			
11:00	0	0	0	0	0	0	0			
12:00	0	0	0	0	0.2	0	1.8			
13:00	0	0	0	0	0	0	0.2			
14:00	0	0	0	0	0	0	0			
15:00	0	0	0.2	0	0	0	0			
16:00	0	0	0	0.6	0	0	2			
17:00	0	0	0	1.2	0	0	2.8			
18:00	0	0	0	1.3	0	0	2.2			
19:00	0.2	0	0	2.1	0	0	1.8			
20:00	2.6	0	0	0.2	0	0	3.2			
21:00	2.0	0	0	0.2	0	0.6	9.0			
22:00	0	0	0	0	0	0	7.0			
23:00	0	0	0	0	0	0	2.2			

Table 23: Rainfall Data for 7 Days Prior to 05/06/2020 Bypass Event
Time	Rainfall (mm)								
Time	11/06/2020	12/06/2020	13/06/2020	14/06/2020	15/06/2020	16/06/2020	17/6/2020		
00:00	0	0	0	0	0	0.2	2.2		
01:00	0	0	0	0	0	0.2	2.4		
02:00	0	0	0	0	0	0	1.4		
03:00	0	0	0	0	0	0.6	0.8		
04:00	0	0	0	0	0	0.2	1.4		
05:00	0	0	0	0	0	0	1.0		
06:00	0	0	0	0	0	0	0.4		
07:00	0	0	0	0	0	0.2	0.4		
08:00	0	0	0	0	0	2.2	0		
09:00	0	0	0	0	0.6	3.0	0		
10:00	0	0	0	0	0.2	4.0	0		
11:00	0	0	0	0	0	0.8	0		
12:00	0	0.2	0	0	0	0	0		
13:00	0	0	0	0	0.2	0	0		
14:00	0	0	0	0	0.6	0.2	0		
15:00	0.2	0	0	0	0.9	0.2	0.2		
16:00	0	0	0	0	0	0	1.1		
17:00	0	0	0	0	0	0	0.9		
18:00	0	0	0	0	0	0	2.8		
19:00	0	0	0	0	0	0.2	1		
20:00	0	0	0	0	0	0.2	1.0		
21:00	0	0	0	0	0	0	1.0		
22:00	0	0	0	0	0	0.6	1.2		
23:00	0	0	0	0	0.2	0.6	1.2		

Table 24: Rainfall Data for 7 Days Prior to 18/06/2020 Bypass Event

Time	Rainfall (mm)								
Time	13/06/2020	14/06/2020	15/06/2020	16/06/2020	17/06/2020	18/06/2020	19/6/2020		
00:00	0	0	0	0.2	2.2	6.2	1.5		
01:00	0	0	0	0.2	2.4	2.2	1.8		
02:00	0	0	0	0	1.4	1.6	2.0		
03:00	0	0	0	0.6	0.8	2.3	5.2		
04:00	0	0	0	0.2	1.4	2.6	3.4		
05:00	0	0	0	0	1.02	1.6	0.2		
06:00	0	0	0	0	0.4	3.9	1.8		
07:00	0	0	0	0.2	0.4	5.2	1.6		
08:00	0	0	0	2.2	0	4.1	0.4		
09:00	0	0	0.6	3.0	0	3.8	0.4		
10:00	0	0	0.2	4.0	0	5.4	0.6		
11:00	0	0	0	0.8	0	3.0	0.4		
12:00	0	0	0	0	0	3.5	0		
13:00	0	0	0.2	0	0	1.1	0.4		
14:00	0	0	0.6	0.2	0	1.0	0		
15:00	0	0	0.9	0.2	0.2	0.4	0		
16:00	0	0	1.9	0	1.1	1.8	0.4		
17:00	0	0	0.4	0	0.9	2.8	0.2		
18:00	0	0	0	0	2.8	2.4	0.2		
19:00	0	0	0	0.2	1	2.3	0.2		
20:00	0	0	0	0.2	1.0	2.5	0.2		
21:00	0	0	0	0	1.0	4.0	0.2		
22:00	0	0	0	0.6	1.2	5.6	0.2		
23:00	0	0	0.2	0.6	1.2	4.1	0.4		

Table 25: Rainfall Data for 7 Days Prior to 20/06/2020 Bypass Event

Condition (7)

The permit holder shall take one representative grab sample of the settled, milli-screened effluent prior to its entry into the coastal outfall pipe every time the discharge authorised by this permit has occurred for more than two hours. Each sample shall be analysed for the following parameters:

рН	
Suspended solids	g/m ³
Total 8005	g/m ³
Faecal coliform	cfu/100mL
bacteria oils/grease	g/m ³

The results of the monitoring shall be forwarded to the Manager, Environmental Regulation, Wellington Regional Council within 10 working days of the bypass discharge occurring.

Five bypass events exceeded the two (2) hour limit specified in this condition. Therefore, samples were required. Below is a summary of the results obtained from the sample analysis:

Date	рН	Suspended Solids	Total BOD5	Faecal Coliform Bacteria	Oils/Grease
		g/m³	g/m³	cfu/100mL	g/m³
11/11/2019	7.3	22	15	181,000	4
29/03/2020	6.7	27	18	590,000	9.3
5/06/2020	7	22	14	380,000	10
18/06/2020	7	160	30	790,000	19
21/06/2020	7	104	14	640,000	7

Table 26: Bypass Sample Analysis

The analytical data sheets for these samples can be found in the quarterly reports.

Condition (8)

When a bypass discharge occurs that lasts for longer than 10 hours the permit holder shall collect two sets of representative water samples from knee deep water at the following locations:

- a) 100m SE of the outfall (map reference NZMS 260: R27; 504.835)
- b) 200m SE of the outfall (map reference NZMS 260: R27; 504.834)
- c) The Karori Stream, above the tidal influence
- d) 100m NW of the mouth of the Karori Stream

The first set of samples shall be taken within 24 hours of the discharge commencing and the second set of samples shall be taken 12- 48 hours after the discharge has ceased.

These samples shall only be taken provided that safe vehicular access is available and weather conditions allow for safe access to the sample locations.

The water samples shall be analysed for enterococci bacteria (cfu/100ml). The time of the sample collection, together with the weather and tidal conditions shall be recorded and reported with the analytical results.

The results of the monitoring shall be forwarded to the Manager, Environmental Regulation, Wellington Regional Council within 10 working days of the bypass discharge occurring.

2 bypass events exceeded the 10 hour limit stated in this condition. The results from the shoreline monitoring can be found below:

	Enterococci							
Date	100m SE of Outfall200m SE of Outfall		The Karori Stream, Above Tidal Influence	100m NW of the Mouth of Karori Stream				
dd/mm/yyyy	cfu/100mL	cfu/100mL	cfu/100mL	cfu/100mL				
19/06/2020	490	290	2400	N/A				
21/06/2020	11	3.3	96	N/A				
24/06/2020	31	9.8	100	1.6				

Table 27: Shoreline Monitoring

Please note that the sample from 100 NW of the mouth of the Karori Stream could not be sampled due to health and safety concerns on the 19th and 21st of June. The sampler could not cross the stream to collect sample.

Condition (12)

The permit holder shall provide the Manager, Environmental Regulation, Wellington Regional Council with an annual report detailing what steps have and will be taken to reduce infiltration and stormwater ingress into the Karori sewerage network.

The report shall be submitted to the Manager, Environmental Regulation, Wellington Regional Council by 31 July each year and shall include, but not be limited to, the following information:

- a) Details of works that have been undertaken and what these works are expected to achieve;
- b) An indication of when any ongoing works will be completed;
- c) Details of any investigations undertaken with regard to inflow and infiltration in the Karori catchment; and
- d) Details of any works or investigations planned for the next financial year.

Note: One annual inflow and infiltration report may be submitted to the Manager, Environmental Regulation, Wellington Regional Council to meet the requirements in this regard of permits WGN060283 [25226], [25227], [35674] and [25229].

An annual inflow and infiltration report can be found in Appendix iv.

Condition (13)

The permit holder shall keep a record of any complaints that are received. The record shall contain the following details, where practicable:

- a) Name and address of the complainant;
- b) Identification of the nature of the complaint;
- c) Date and time of the complaint and of the alleged event;
- d) Weather conditions at the time of the complaint; and
- e) Any measures taken to address the cause of the complaint.

The permit holder shall notify the Manager, Environmental Regulation, Wellington Regional Council of any complaints relating to the exercise of this permit, within twenty-four hours of being received by the permit holder or the next working day.

The permit holder shall forward to the Manager, Environmental Regulation, Wellington Regional Council a copy of any complaints recorded in the annual report required by condition (10) of this permit.

There were no complaints during the 2019/2020 reporting period.

WGN060283 [35674]

Condition (2)

This permit shall only be exercised when the sewage inflow to the treatment plant exceeds 190 litres per second (L/s), and the 1000 m³ storage tank is full.

There were seven bypass events that occurred in the 2019/2020 reporting year. These events had an influent flow rate to the Western WWTP greater than 190L/s and the 1000m³ storage tank was full. This resource consent can be applied.

Condition (6)

The permit holder shall monitor and record the time, flow rate, duration and total volume of the overflow discharges into the Karori Stream, and shall report the results to the Manager, Environmental Regulation, Wellington Regional Council, within 10 working days of the overflow event occurring.

The permit holder shall maintain an incident log containing the details of each overflow discharge and make it available to the public or the Manager, Environmental Regulation, Wellington Regional Council upon request.

The following is a summary of the bypass events from the Western WWTP for the 2019/2020 reporting period:

Date	Date of Notification	Duration	Average Flow to Stream Rate	Maximum Flow Rate to Stream	Total Volume of Bypass to Stream	Consented	Cause
dd mmm yyyy	dd mmm yyyy	hrs/mins	L/s	L/s	m³	Y/N	
4/07/2019	4/07/2019	01hr 14m	3	5	14	Y	Storm event.
17/08/2019	17/08/2019	00hr 32m	1	2	2	Y	Storm event.
29/03/2020	29/03/2020	05hr 02m	28	69	557	Y	Storm event.
6/05/2020	6/05/2020	01hr 57m	5	10	32	Y	storm event
5/06/2020	5/06/2020	04hr 20m	5	5	92	Y	storm event
18/06/2020	18/06/2020	32hr 48m	37	67	4,343	Y	Storm event.
20/06/2020	20/06/2020	19hr 00m	2	5	11,221	Y	Storm Event

 Table 28: Karori Stream Bypass Events from 2019/2020 Reporting Period

Condition (7)

The permit holder shall submit to the Manager, Environmental Regulation, Wellington Regional Council the amount of rainfall recorded in each hour at Karori Reservoir rain-gauge for each of the 7 days preceding each overflow event in the annual report required by condition (11) of this permit.

For all rainfall data please refer to WGN080003 [25227] Condition (6).

Condition (8)

After an overflow discharge has occurred for more than 2 hours, the permit holder shall collect a representative grab sample of the treated effluent, prior to its entry into Karori Stream. All samples shall be analysed for the following parameters:

Suspended solids	g/m ³
Ammoniacal nitrogen	g/m ³
Total BOD5	g/m ³
Faecal coliform	cfu/100mL

The results of the monitoring shall be forwarded to the Manager, Environmental Regulation, Wellington Regional Council within 10 working days of the bypass discharge occurring.

4 events during the 2019/2020 reporting year exceeded the two (2) hour limit stated in this condition. Therefore, these samples were required. Below is a summary of the analytical results from the samples:

Date	Suspended Solids	Ammoniacal Nitrogen	BOD ₅	Faecal Coliforms
	g/m³	g/m³	g/m³	cfu/100mL
29/03/2020	16	1	6	13
5/06/2020	26	1	23	100
18/06/2020	3	4	3	4700
21/06/2020	11	1	10	400

Table 29: Western WWTP Treated Effluent Sample Results

The analytical data sheet can be found in the quarterly reports.

Condition (9)

After an overflow discharge has occurred for more than 24 hours, the permit holder shall collect two representative grab samples from the Karori Stream, one from upstream of the discharge point and one no more than 100 metres downstream of the discharge point. This sampling shall be repeated at daily intervals thereafter for the duration of the discharge. A final set of samples shall be taken two hours after the discharge has ceased, or as soon as is practicable thereafter.

All samples shall be analysed for the following parameters:

Suspended solids	g/m ³
Ammoniacal nitrogen	g/m ³
Total BOD ₅	g/m ³
Faecal coliform	cfu/100mL

The results of the monitoring shall be forwarded to the Manager, Environmental Regulation, Wellington Regional Council within 10 working days of the bypass discharge occurring.

Note: No monitoring shall be required during the hours of darkness, or when conditions are too dangerous for the safe procurement of samples.

Please note that sample required 100 metres downstream have not been taken due to health and safety concerns.

There have been 1 bypass event that exceeded a 24 hour period. Below is a summary of the analytical results from the samples:

Date	Suspended Solids	Ammoniacal Nitrogen	BOD ₅	Faecal Coliforms
	g/m³	g/m³	g/m³	cfu/100mL
18/06/2020	210	0.019	14	4500
21/06/2020	10	0.0075	0.5	1100

Table 22: Karori Stream Sample Results

Condition (15)

The permit holder shall provide the Manager, Environmental Regulation, Wellington Regional Council and the members of the Community Liaison Group with an annual report detailing what steps have and will be taken to reduce infiltration and stormwater ingress into the Karori sewerage network.

The report shall be submitted to the Manager, Environmental Regulation, Wellington Regional Council by 31 July each year and shall include, but not be limited to, the following information:

- a) Details of works that have been undertaken and what these works are expected to achieve;
- b) An indication of when any ongoing works will be complete;
- c) Details of any investigations undertaken with regard to inflow and infiltration in the Karori catchment; and
- d) Details of any works or investigations planned for the next financial year.

Note: One annual inflow and infiltration report may be submitted to the Manager, Environmental Regulation, Wellington Regional Council to meet the requirements in this regard of permits WGN060283 [25227]-[25229].

An annual inflow and infiltration report can be found in Appendix iv.

Condition (16)

The permit holder shall keep a record of any complaints that are received. The record shall contain the following details, where practicable:

- f) Name and address of the complainant;
- g) Identification of the nature of the complaint;
- h) Date and time of the complaint and of the alleged event;
- i) Weather conditions at the time of the complaint; and
- j) Any measures taken to address the cause of the complaint.

The permit holder shall notify the Manager, Environmental Regulation, Wellington Regional Council of any complaints relating to the exercise of this permit, within twenty-four hours of being received by the permit holder or the next working day.

The permit holder shall forward to the Manager, Environmental Regulation, Wellington Regional Council a copy of any complaints recorded in the annual report required by condition (10) of this permit.

There were no complaints during the 2019/2020 reporting period.

WGN 060283 [35675]

Condition (2)

This consent shall only be exercised when the sewage inflow to the treatment plant exceeds 390 litres per second (L/s), and the 1000 m³ storage tank is full.

Condition (5)

The permit holder shall monitor and record the time, flow rate, duration and total volume of the bypass overflow discharges into the Karori Stream, and shall report the results to the Manager, Environmental Regulation, Wellington Regional Council, within 10 working days of the overflow event occurring. The permit holder shall maintain an incident log containing the details of each bypass overflow discharge and make it available to the public or the Manager, Environmental Regulation, Wellington Regional Council, upon request.

There have been one bypass event this FY2019/2020. The details are the following:

Date	Duration	Average Influent Flow Rate	Maximum Influent Flow Rate	Average Bypass Flowrate	Total Volume of Bypass	Consented	Cause
dd/mm/yyyy	hrs/mins	L/s	L/s	L/s	m³	Y/N	
18/06/2020	N/A	344	450	N/A	N/A	Y	Wet weather in the catchment area.

Table 24: Bypass Event Details

Condition (6)

The permit holder shall submit to the Manager, Environmental Regulation, Wellington Regional Council the amount of rainfall recorded at the Karori Reservoir rain-gauge in each hour for each of the 7 days preceding each bypass overflow event in the annual report required by condition (9) of this permit.

Rainfall data can be found in WGN060283 [25227] Condition 6 of this report.

Condition (7)

The permit holder shall take one representative grab sample of the settled, milli-screened effluent prior to its entry into the Karori Stream every time the discharge authorised by this permit has occurred for more than one hour. Each sample shall be analysed for the following parameters:

pH Suspended solids g/m3 Total BOD5 g/m3 Faecal coliform bacteria cfu/100ml Oils/grease g/m3 The results of the monitoring shall be form

The results of the monitoring shall be forwarded to the Manager, Environmental Regulation, Wellington Regional Council within 10 working days of the bypass discharge occurring.

Date	pH Suspended Solids		Total BOD5	Faecal Coliform Bacteria	Oils/Grease
		g/m³	g/m³	cfu/100mL	g/m³
18/06/2020	7	160	30	790,000	19

Table 32: Partially Treated Effluent Sample Results

WGN060283 [25230]

Condition (3)

The permit holder shall monitor air quality in the vicinity of the plant to confirm the absence of faecal coliforms and salmonella originating from the plant. Sampling is to be carried out at least once every six months.

The sampling method and locations are to be agreed with the Wellington Regional Council within three months of the granting of this permit.

Should the presence of faecal coliforms or salmonella be measured at any time, the Wellington Regional Council may direct that the permit holder sample at least once every month for six months before returning to the six monthly sampling regime.

The results shall be provided annually to Wellington Regional Council as part of the annual report required by condition 8 of this permit.

Ambient Microbe Monitoring was performed at the Western WWTP. The following table is a summary of the air quality monitoring in the vicinity of the WWTP:

	Faecal C	Coliforms	Total C	oliforms	Salmonella		
Location	8/08/2019	15/04/2020	8/08/2019	15/04/2020	8/08/2019	15/04/2020	
Site 1	Absent	Absent	Absent	Absent	Absent	Absent	
Site 2	Absent	Absent	Absent	Absent	Absent	Absent	
Site 3	Absent	Absent	Absent	Absent	Absent	Absent	

Table 33:Semi-Annual Air Quality Monitoring

The full reports can be found in the quarterly reports for October – December 2019 and April – June 2020.

Condition (4)

The permit holder shall undertake a comprehensive assessment of the quality of the biofilter media on an annual basis (or more frequently if appropriate).

The results of this assessment, including a summary of the findings, details of any action(s) to be taken to improve the efficiency of the biofilter, and a timetable for those actions to be undertaken, shall be submitted to the Manager, Environmental Regulation, Wellington Regional Council within one month of the assessment being undertaken.

Actions to be undertaken may include, but are not limited to:

- a) Turning, restructuring and dampening of the bed material,
- b) the addition of supplementary bed material, or
- c) total bed material replacement.

The first assessment shall be undertaken within three months of the granting of this permit. Subsequent assessments shall be undertaken annually thereafter.

The biofilter monitoring report was performed on November 2019. The report can be found in Appendix ii: Biofilter Monitoring Report.

Condition (5)

The permit holder shall monitor the following parameters at the frequency noted:

- a) Weekly visual observations of the state of the biofilter bed, particularly for short circuiting and clogging of the bed;
- b) weekly monitoring of pressure drop across the biofilter bed;
- c) weekly monitoring of biofilter bed moisture content; and
- d) monthly monitoring of biofilter bed pH.

The frequency of (b), (c), and (d) can be altered by agreement in writing by the Manager, Environmental Regulation, Wellington Regional Council.

Monitoring results shall be recorded and be made available to Wellington Regional Council upon request. Information shall be forwarded annually to Wellington Regional Council as part of the annual report required by condition 8 of this permit.

A full summary of the biofilter monitoring can be found in Appendix ii: Biofilter Monitoring

Condition (10)

The permit holder shall keep a permanent record of any complaints received alleging adverse effects from the permit holder's operations. The complaints record shall contain the following where practicable:

- a) the name and address of the complainant, if supplied;
- b) identification of the nature of the complaint;
- c) date and time of the complaint and alleged event;
- d) weather conditions at the time of the alleged event;
- e) results of the permit holder's investigations; and
- n any mitigation measures adopted.

The permit holder shall notify the Manager, Environmental Regulation, Wellington Regional Council of any complaints relating to the exercise of this permit, within twenty-four hours of being received by the permit holder or the next working day.

The permit holder shall forward to the Manager, Environmental Regulation, Wellington Regional Council a copy of any complaints recorded in the annual report required by condition (8) of this permit.

There were no complaints during the 2019/2020 reporting period.

Appendix i:

Effluent Biological Oxygen Demand Results

		BOD _{5T}		BOD _{ST}			BOD _{ST}			
		July 2019			Aug 2019			Sept 2019		
Day	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance	
	g/m³	g/m³	%	g/m³	g/m³	%	g/m³	g/m³	%	
1	3.0			4.0			7.0			
2	4.0						6.0			
3	6.0						6.0			
4	3.0			5.0			5.0			
5				5.0			5.0			
6				4.0						
7	3.0			5.0						
8	3.0			7.0			5.0			
9	3.0						6.0			
10	3.0						4.0			
11	3.0			5.0			5.0			
12				4.0			6.0			
13				3.0						
14	5.0			3.0						
15	3.0			4.0			5.0			
16	3.0						4.0			
17	3.0						5.0			
18	3.0			5.0			4.0			
19	3.0			3.0			5.0			
20	3.0			4.0			3.0			
21	3.0			6.0			3.0			
22	3.0			3.0			5.0			
23	3.0			3.0			5.0			
24	3.0			4.0			5.0			
25	4.0			5.0			5.0			
26				4.0			5.0			
27				4.0						
28	4.0			4.0						
29	4.0			5.0			4.0			
30	3.0						3.0			
31	4.0	3.0	100		3.9	100		5.0	100	
Limits	N/A	20	90	N/A	20	90	N/A	20	90	

	BOD _{ST}				BOD 5T		BOD _{ST}		
		Oct 2019			Nov 2019			Dec 2019	
Day	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance
	g/m³	g/m³	%	g/m³	g/m³	%	g/m³	g/m³	%
1	3.0						6.0		
2	3.0						5.0		
3	3.0			6.0			5.0		
4				5.0			5.0		
5				4.0			6.0		
6	3.0			4.0					
7	3.0			7.0					
8	4.0						7.0		
9	3.0						5.0		
10	6.0			14.0			5.0		
11				4.0			5.0		
12				7.0			5.0		
13	5.0			13.0			5.0		
14	4.0			16.0			6.0		
15	3.0						6.0		
16	3.0						9.0		
17	4.0			7.0			13.0		
18	6.0			5.0			5.0		
19	3.0			15.0			4.0		
20	3.0			7.0					
21	3.0			5.0					
22	5.0			3.0			10.0		
23	4.0			5.0			6.0		
24	3.0			5.0					
25				4.0					
26				5.0			6.0		
27				5.0					
28	3.0			5.0					
29	3.0						7.0		
30	4.0						5.0		
31	5.0	4.0	100		5.7	100		5.4	100
Limits	N/A	20	90	N/A	20	90	N/A	20	90

		BOD _{5T}			BOD _{5T}		BOD _{ST}		
		Jan 2020			Feb 2020			Mar 2020	
Day	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance
	g/m³	g/m³	%	g/m³	g/m³	%	g/m³	g/m³	%
1							8.0		
2	4.0			7.0			9.0		
3				6.0			9.0		
4				5.0			7.0		
5	7.0						5.0		
6	6.0			6.0			13.0		
7	6.0						7.0		
8	5.0						8.0		
9	8.0			5.0			7.0		
10				5.0			8.0		
11				5.0			6.0		
12	14.0			5.0			11.0		
13	4.0			5.0			10.0		
14	3.0						10.0		
15	3.0						9.0		
16	4.0			3.0			16.0		
17				6.0			11.0		
18				8.0			10.0		
19				4.0			12.0		
20	4.0			6.0			10.0		
21	3.0			4.0			11.0		
22	4.0			7.0			8.1		
23	5.0			3.0			2.6		
24	4.0			4.0			5.5		
25	6.0			5.0			5.9		
26	7.0			6.0			6.4		
27	4.0			6.0			14.0		
28	4.0			6.0			8.5		
29	5.0			5.0			4.5		
30	6.0						5.1		
31		5.0	100		4.7	100	6.2	9.0	100
Limits	N/A	20	90	N/A	20	90	N/A	20	90

	BOD _{5T}				BOD _{ST}		BOD _{ST}		
		April 2020			May 2020			June 2020	
Day	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance
	g/m³	g/m ³	%	g/m³	g/m³	%	g/m³	g/m³	%
1	6			47			15		
2	12			88			13		
3				150			13		
4				15			110		
5	7			58			8		
6	15			12			10		
7	12			9.7			9		
8	13			3			9		
9	14			4.2			8		
10	14			8.9			10		
11	10			18			7		
12	8			12			14		
13	6			7.3			11		
14	14			7.3			11		
15	12			16			11		
16	14			22			10		
17				16			6		
18				71			48		
19	11			60			6		
20	12			15			23		
21	16			15			7		
22	10			19			11		
23	13			18			8		
24	6			17			8		
25	14			18			7		
26	13			17			11		
27	110			19			11		
28	120			23					
29	14			23					
30	14			19					
31	6	11	100	21	19	75	15	12	95
Limits	N/A	20	90	N/A	20	90	N/A	20	90

		Suspended Sol	ids		Suspended So	lids	Suspended Solids		
		July 2019			Aug 2019			Sept 2019	
Day	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance
	g/m³	g/m³	%	g/m³	g/m³	%	g/m³	g/m³	%
1	6.0			6.0			10.0		
2	6.0						8.0		
3	10.0						9.0		
4	6.0			6.0			7.0		
5				6.0			6.0		
6				6.0					
7	6.0			8.0					
8	6.0			8.0			6.0		
9	6.0						6.0		
10	6.0						8.0		
11	6.0			6.0			6.0		
12				7.0			6.0		
13				8.0					
14	25.0			6.0					
15	6.0			6.0			7.0		
16	6.0						6.0		
17	6.0						6.0		
18	6.0			6.0			6.0		
19	9.0			6.0			6.0		
20	9.0			6.0			14.0		
21	6.0			6.0			15.0		
22	6.0			6.0			6.0		
23	6.0			13.0			6.0		
24	6.0			14.0			6.0		
25	6.0			7.0			6.0		
26				6.0			6.0		
27				6.0					
28	6.0			6.0					
29	6.0			7.0			6.0		
30	6.0								
31		7.0	100		7.0	100		6.5	100
Limits	N/A	30	90	N/A	30	90	N/A	30	90

Effluent Suspended Solids Results

		Suspended Sol	lids		Suspended So	lids	Suspended Solids		
		Oct 2019			Nov 2019			Dec 2019	
Day	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance
	g/m³	g/m³	%	g/m³	g/m³	%	g/m³	g/m ³	%
1	6.0						7.0		
2	8.0						6.0		
3	6.0			6.0			7.0		
4				7.0			6.0		
5				6.0			7.0		
6	6.0			6.0					
7	6.0			6.0					
8	6.0						14.0		
9	6.0						6.0		
10	8.0			32.0			6.0		
11				7.0			6.0		
12				6.0			6.0		
13	6.0			14.0			12.0		
14	6.0			14.0			11.0		
15	6.0						7.0		
16	6.0						21.0		
17	6.0			8.0			32.0		
18	15.0			6.0			6.0		
19	13.0			17.0			6.0		
20	6.0			10.0					
21	6.0			6.0					
22	6.0			16.0			9.0		
23	6.0			23.0			7.0		
24	6.0			6.0					
25				6.0					
26				6.0			6.0		
27				6.0					
28	6.0			6.0					
29	6.0						6.0		
30	6.0						6.0		
31		7.0	100		9.0	100		7.4	100
Limits	N/A	30	90	N/A	30	90	N/A	30	90

		Suspended Sol	ids		Suspended Sol	ids	Suspended Solids		
		Jan 2020			Feb 2020			March 2020)
Day	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance
	g/m³	g/m³	%	g/m³	g/m³	%	g/m³	g/m³	%
1							10.0		
2	6.0			11.0			15.0		
3				6.0			24.0		
4				7.0			10.0		
5	7.0						10.0		
6	8.0			8.0			28.0		
7	6.0						20.0		
8	6.0						19.0		
9	9.0			6.0			14.0		
10				6.0			9.0		
11				6.0			45.0		
12	31.0			6.0			19.0		
13	6.0			27.0			7.0		
14	6.0						11.0		
15	6.0						12.0		
16	6.0			12.0			12.0		
17				7.0			13.0		
18				8.0			6.0		
19				6.0			11.0		
20	7.0			8.0			13.0		
21	6.0			6.0			14.0		
22	6.0			8.0			14.0		
23	12.0			6.0			16.0		
24	10.0			6.0			11.0		
25	13.0			6.0			13.0		
26	11.0			8.0			14.0		
27	7.0			11.0			13.0		
28	7.0			10.0			8.7		
29	6.0			9.0			6.8		
30	7.0						5.6		
31		8.0	100		6.8	100	5.2	13.7	100
Limits	N/A	30	90	N/A	30	90	N/A	30	90

		Suspended Solid	ls		Suspended So	lids	Suspended Solids		olids
		April 2020			May 2020			June 2020	1
Day	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance
	g/m ³	g/m³	%	g/m ³	g/m³	%	g/m³	g/m³	%
1	18			110			23		
2	20			210			20		
3				290			24		
4				22			200		
5	4.4			53			9		
6	23			16			13		
7	14			8.8			11		
8	18			3.6			13		
9	18			5			12		
10	13			20			11		
11	13			22			14		
12	10			19			13		
13	10			27			16		
14	13			24			18		
15	21			29			15		
16	19			40			11		
17				28			130		
18				330			110		
19	13			74			18		
20	13			37			43		
21	6.5			24			13		
22	8			36			42		
23	9			38			12		
24	5.7			37			11		
25	15			20			10		
26	20			23			14		
27	320			27			13		
28	310			45			11		
29	53			45			11		
30	21			30			11	ļ	
31	18	12	100	33	33	80	23	22	85
Limits	N/A	30	90	N/A	30	90	N/A	30	90

		Faecal Coliforr	ns		Faecal Colifor	ms	Faecal Coliforms		
		July 2019			Aug 2019			Sept 2019	
Day	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance
	g/m³	g/m³	%	g/m³	g/m³	%	g/m³	g/m³	%
1	4			16					
2	20			4			130		
3	48						4		
4	430						56		
5	36			4			96		
6				24			170		
7				24					
8	8			56					
9	4			96			60		
10	28						120		
11	4						36		
12	4			56			72		
13				72			36		
14				110					
15	4			4					
16	12			32			64		
17	8						32		
18	4						20		
19	4			4			16		
20	8			20			64		
21	20			12			4		
22	4			220			4		
23	4			4			8		
24	4			12			12		
25	4			8			100		
26	8			4			48		
27				92			16		
28				180					
29	40			100					
30	48			260			4		
31	8	10	100		18	100		33	100
Limits	N/A	200	90	N/A	200	90	N/A	200	90

Effluent Faecal Coliforms Results

		Faecal Coliforr	ns		Faecal Colifor	ms	Faecal Coliforms		
		Oct 2019			Nov 2019			Dec 2019	
Day	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance
	g/m ³	g/m ³	%	g/m³	g/m ³	%	g/m³	g/m ³	%
1	120			520					
2	4						4		
3	4						4		
4	12			12			48		
5				100			4		
6				110			4		
7	12			4					
8	12			12					
9	16			8			16		
10	44						4		
11	77			2200			4		
12				4			4		
13				360			4		
14	4			4			4		
15	20			4			4		
16	110						4		
17	24						4		
18	32			16			3600		
19	350			52			28		
20	92			84			4		
21	24			320					
22	24			48					
23	280			4			4		
24	20			24			4		
25	32			24					
26				12					
27				8			64		
28				4					
29	460			36					
30	80						4		
31	190	29	100		34	95	9100	8	95
Limits	N/A	200	90	N/A	200	90	N/A	200	90

		Faecal Coliforr	ns	Faecal Coliforms			Faecal Coliforms		ns
		Jan 2020			Feb 2020			March 2020	
Day	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance
	g/m³	g/m ³	%	g/m³	g/m ³	%	g/m³	g/m ³	%
1							68		
2							52		
3	140			8			68		
4				84			8180		
5				210			24800		
6	8						16		
7	4			120			180		
8	4						92		
9	64						200		
10	12			130			110		
11				44			170		
12				20			110		
13	28			60			140		
14	4			69			32		
15	4						96		
16	150						200		
17	12			62			170		
18				8			100		
19				20			8		
20				8			8		
21	180			200			280		
22	16			4			68		
23	12			12			130		
24	12			12			110		
25	48			120			26		
26	8			180			62		
27	56			140			13		
28	170			470			39		
29	120			340			80		
30	280						6.6		
31	32	23	100		41	100	1.6	122	90
Limits	N/A	200	90	N/A	200	90	N/A	200	90

		Faecal Coliforr	ns		Faecal Coliforr	ns	Faecal Coliforms		
		Apr 2020			May 2020		June 2020		
Day	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance	Results	20 Day Geometric Mean	20 Day % Compliance
	g/m³	g/m ³	%	g/m³	g/m ³	%	g/m³	g/m ³	%
1	48			18			2		
2	42			11			7		
3				700			8		
4				8.2			23		
5	39			1.6			2		
6	6.6			1.6			2		
7	120			1.6			2		
8	1.6			1.6			2		
9	1.6			1.6			3		
10	38			1.6			2		
11	9.8			4.9			2		
12	1100			9.8			2		
13	3.3			9.8			2		
14	18			9.8			2		
15	130			6.6			2		
16	120			9.8			2		
17				3.3			5		
18				6.6			5		
19	15			3.3			420		
20	30			3.3			3		
21	96			3.3			3		
22	31			1.6			68		
23	23			6.6			2		
24	23			8.2			2		
25	40			680			2		
26	110			34			2		
27	76			30			2		
28	82			11			2		
29	44			18			7		
30	8.2			8.2			2		
31	48	27	100	8.2	33	100		3	100
Limits	N/A	200	90	N/A	200	90	N/A	200	90

|--|

		Treatment Plant			Treatment Plant		Treatment Plant			
	July 2019			Aug 2019			Sept 2019			
Day	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	
	m³/hour	L/s	m³	m³/hour	L/s	m³	m³/hour	L/s	m³	
1	167	240	4009	201	240	4815	151	42	3620	
2	165	229	3967	176	100	4229	146	205	3513	
3	447	217	10721	203	102	4871	138	224	3316	
4	353	239	8468	214	240	5142	150	194	3592	
5	289	148	6945	175	237	4202	271	240	6508	
6	251	127	6026	187	222	4486	179	136	4292	
7	239	240	5730	182	240	4362	113	31	2703	
8	214	184	5139	176	239	4215	113	31	2703	
9	189	240	4544	154	81	3702	150	220	3597	
10	187	238	4478	227	130	5459	141	236	3385	
11	191	240	4582	243	240	5834	144	223	3445	
12	185	87	4439	331	240	7933	142	195	3399	
13	202	109	4840	209	211	5019	179	150	4287	
14	441	228	10593	179	200	4298	256	146	6144	
15	324	240	7781	163	192	3904	241	120	5777	
16	393	240	9431	142	76	3414	169	220	4059	
17	291	240	6986	399	188	9570	158	191	3802	
18	305	240	7315	281	166	6735	152	205	3640	
19	336	163	8071	196	198	4706	140	182	3353	
20	439	167	10531	186	216	4464	135	80	3241	
21	358	141	8582	214	148	5133	154	89	3688	
22	287	240	6899	204	204	4905	158	84	3785	
23	275	240	6607	170	86	4084	152	206	3647	
24	272	240	6534	176	90	4229	136	187	3260	
25	215	240	5161	194	95	4652	141	198	3394	
26	205	91	4917	158	240	3780	141	198	3394	
27	210	97	5044	158	200	3800	122	95	2920	
28	246	109	5907	153	204	3670	148	89	3555	
29	215	240	5157	142	213	3399	145	76	3488	
30	200	239	4787	154	166	3684	128	184	3072	
31	241	240	5771	151	42	3620				
Average	268.77	199.13	6450.39	196.71	175.68	4719.87	156.43	155.90	3752.63	
Minimum	165	87	3967	142	42	3399	113	31	2703	
Maximum	447	240	10721	399	240	9570	271	240	6508	

		Treatment Plant			Treatment Plant		Treatment Plant			
	Oct 2019				Nov 2019		Dec 2019			
Day	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	
	m³/hour	L/s	m³	m³/hour	L/s	m³	m³/hour	L/s	m³	
1	159	171	3816	124	71	2968	152	71	3645	
2	159	171	3816	149	80	3565	135	199	3246	
3	133	167	3197	158	83	3782	150	168	3588	
4	126	73	3031	133	210	3198	134	185	3212	
5	273	170	6547	139	187	3337	132	186	3156	
6	206	110	4931	130	168	3114	123	84	2962	
7	181	240	4337	137	188	3282	182	143	4358	
8	164	191	3945	122	68	2934	393	240	9432	
9	171	193	4103	153	106	3665	187	233	4491	
10	255	240	6123	287	162	6887	161	239	3866	
11	156	147	3751	581	240	13938	139	190	3346	
12	172	93	4133	271	240	6502	139	192	3338	
13	165	86	3966	247	240	5921	123	73	2950	
14	145	191	3485	221	194	5299	147	197	3518	
15	142	201	3418	186	123	4472	150	188	3606	
16	172	186	4133	178	87	4275	194	210	4653	
17	147	197	3532	198	96	4756	410	238	9828	
18	430	185	10315	190	219	4569	428	239	10270	
19	319	240	7665	171	202	4091	210	230	5030	
20	237	105	5684	153	204	3662	175	116	4207	
21	200	229	4806	153	204	3662	176	99	4216	
22	230	154	5509	116	151	2785	156	161	3738	
23	279	198	6701	144	78	3447	149	157	3563	
24	184	199	4411	166	83	3972	137	66	3294	
25	164	81	3925	141	202	3387	128	68	3076	
26	159	84	3820	134	179	3210	129	155	3103	
27	156	74	3735	141	194	3390	125	240	3006	
28	169	177	4060	125	200	2994	118	62	2832	
29	151	195	3620	124	79	2978	127	56	3036	
30	142	196	3399	136	82	3274	122	174	2938	
31	141	81	3379				121	56	2902	
Average	189.90	162.10	4557.84	176.93	154.00	4243.87	172.65	158.55	4142.13	
Minimum	126	73	3031	116	68	2785	118	56	2832	
Maximum	430	240	10315	581	240	13938	428	240	10270	

		Treatment Plant			Treatment Plant		Treatment Plant			
	Jan 2020				Feb 2020		March 2020			
Day	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	
	m³/hour	L/s	m³	m³/hour	L/s	m³	m³/hour	L/s	m³	
1	112	51	2680	125	72	3007	129	77	3108	
2	119	163	2853	125	72	3007	119	115	2844	
3	135	151	3246	118	159	2830	110	68	2643	
4	126	62	3034	126	165	3021	133	78	3200	
5	131	55	3135	110	58	2640	120	74	2889	
6	116	195	2782	137	196	3292	111	122	2672	
7	121	150	2902	110	63	2647	129	79	3106	
8	118	166	2833	126	65	3031	126	72	3025	
9	117	171	2796	136	74	3264	129	138	3100	
10	115	63	2761	125	188	2990	121	75	2905	
11	140	62	3352	120	75	2876	112	129	2700	
12	142	240	3417	113	183	2720	120	81	2868	
13	154	172	3687	116	171	2788	117	106	2808	
14	131	188	3136	105	70	2515	125	76	2998	
15	123	174	2944	128	73	3069	126	70	3015	
16	125	181	2988	134	70	3227	120	117	2889	
17	106	59	2534	116	185	2777	112	71	2683	
18	127	76	3054	191	211	4586	124	170	2973	
19	127	61	3036	124	166	2984	119	66	2863	
20	128	68	3062	127	208	3041	120	70	2890	
21	131	160	3141	121	67	2896	121	76	2912	
22	116	158	2784	212	128	5087	146	80	3515	
23	134	190	3205	191	146	4572	116	66	2783	
24	112	64	2689	133	204	3180	160	96	3848	
25	131	75	3152	121	187	2900	125	72	3012	
26	136	70	3271	126	186	3015	128	122	3061	
27	129	192	3105	114	178	2731	196	175	4698	
28	131	167	3155	115	65	2748	389	180	9333	
29	118	180	2821	123	70	2941	403	192	9664	
30	121	182	2903				267	155	6417	
31	117	69	2802				169	77	4064	
Average	125.45	129.52	3008.39	129.93	129.48	3116.62	149.74	101.45	3596.32	
Minimum	106	51	2534	105	58	2515	110	66	2643	
Maximum	154	240	3687	212	211	5087	403	192	9664	

		Treatment Plant			Treatment Plant		Treatment Plant			
		April 2020		May 2020			June 2020			
Day	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	
	m ³ /hour	L/s	m ³	m³/hour	L/s	m ³	m³/hour	L/s	m³	
1	152	77	3649	170	98	4072	169	95	4065	
2	133	62	3202	166	95	3995	162	78	3895	
3	132	72	2031	338	240	8103	146	79	3505	
4	164	64	1326	353	240	8466	261	191	6267	
5	152	85	3806	412	240	9885	474	204	11369	
6	135	184	3101	340	198	8155	310	159	7443	
7	135	70	3252	221	105	5298	269	143	6454	
8	144	83	3446	195	101	4683	198	97	4758	
9	144	82	3461	193	114	4642	182	94	4372	
10	142	80	3410	203	113	4862	169	81	4046	
11	146	77	3515	177	105	4258	167	86	4018	
12	147	79	3528	174	95	4171	152	89	3658	
13	181	87	4333	166	90	3978	155	89	3729	
14	138	136	3304	177	98	4259	166	90	3995	
15	129	76	3097	168	92	4020	171	88	4094	
16	137	134	3294	165	84	3965	232	146	5558	
17	139	152	3345	180	93	4326	344	137	8248	
18	159	84	3824	188	109	4515	685	234	16435	
19	161	86	3861	164	96	3930	692	224	16620	
20	146	89	3507	159	99	3827	589	211	14141	
21	146	75	3504	158	83	3801	673	202	16155	
22	140	143	3362	144	77	3462	466	163	11194	
23	146	76	3502	183	108	4402	336	144	8061	
24	152	84	3644	235	150	5629	291	120	6986	
25	148	79	3548	590	221	14149	264	113	6332	
26	139	77	3340	277	136	6639	241	103	5778	
27	165	95	3962	218	104	5243	235	109	5637	
28	165	91	3962	170	110	4070	233	107	5585	
29	166	90	3996	156	85	3733	280	151	6717	
30	163	158	3906	155	81	3725	258	115	6180	
31	152	77	3649	143	84	3441	169	95	4065	
Average	148.32	93.68	3440.87	217.35	120.77	5216.26	294.81	130.23	7076.13	
Minimum	129	62	1326	143	77	3441	146	78	3505	
Maximum	181	184	4333	590	240	14149	692	234	16620	

Effluent Pipeline Flow Rate

		Effluent Pipeline Flow	1		Effluent Pipeline Flow	I	Effluent Pipeline Flow			
	July 2019			Aug 2019			Sept 2019			
Day	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	
	m ³ /hour	L/s	m³	m³/hour	L/s	m³	m³/hour	L/s	m³	
1	165	77	3965	164	79	3944	172	78	4132	
2	160	76	3848	156	76	3753	169	81	4053	
3	215	138	5159	165	75	3960	157	80	3756	
4	363	142	8713	165	76	3958	163	80	3891	
5	277	125	6640	153	74	3667	210	85	5052	
6	231	88	5533	150	74	3608	246	98	5916	
7	213	77	5108	149	74	3583	202	84	4838	
8	195	82	4687	149	75	3567	187	77	4481	
9	185	77	4446	144	71	3461	181	83	4354	
10	180	73	4318	176	100	4216	168	81	4021	
11	174	77	4184	197	114	4732	170	86	4088	
12	172	74	4124	273	193	6555	161	82	3854	
13	174	78	4187	218	92	5221	165	86	3962	
14	283	142	6791	184	92	4408	255	123	6126	
15	221	82	5310	169	80	4065	252	90	6041	
16	301	130	7229	161	78	3867	202	84	4855	
17	259	126	6208	350	195	8410	182	85	4363	
18	218	77	5236	268	100	6423	180	83	4313	
19	254	136	6094	199	89	4770	170	83	4088	
20	330	130	7932	186	83	4472	167	80	3979	
21	285	126	6847	188	80	4515	177	84	4238	
22	252	103	6058	232	135	5572	177	80	4259	
23	225	79	5380	180	81	4327	163	83	3910	
24	223	78	5355	192	82	4613	171	81	4108	
25	208	77	4998	185	81	4447	165	86	3970	
26	197	79	4705	171	79	4105	158	82	3784	
27	199	78	4776	168	91	4033	162	82	3890	
28	202	79	4857	161	79	3866	157	73	3772	
29	180	80	4330	158	77	3769	160	70	3670	
30	184	80	4416	154	76	3692	156	77	3724	
31	202	89	4823	164	76	3937				
	-	-		-						
Average	223.45	95.32	5363.13	184.81	91.19	4436.00	180.17	83.57	4316.27	
Minimum	160	73	3848	144	71	3461	156	70	3670	
Maximum	363	142	8713	350	195	8410	255	123	6126	
	Effluent Pipeline Flow				Effluent Pipeline Flow	1	Effluent Pipeline Flow			
---------	------------------------	------------------	------------------	-----------------------	-------------------------------	------------------	------------------------	------------------	------------------	--
		Oct 2019			Nov 2019			Dec 2019		
Day	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	
	m³/hour	L/s	m³	m³/hour	L/s	m³	m³/hour	L/s	m³	
1	172	87	4129	108	82	2595	167	74	4004	
2	185	91	4332	173	82	4148	155	76	3728	
3	169	78	4031	167	73	4016	173	78	4140	
4	154	69	3698	165	82	3963	158	79	3797	
5	214	134	5140	159	79	3823	153	77	3668	
6	214	88	5137	155	79	3730	152	79	3636	
7	173	79	4147	161	79	3874	157	73	3759	
8	161	76	3853	148	79	3563	305	140	7309	
9	157	71	3768	173	80	4162	217	113	5198	
10	168	82	3995	231	128	5545	180	79	4321	
11	236	103	5665	451	143	10722	162	78	3894	
12	184	87	4413	272	133	6528	160	79	3836	
13	178	79	4283	245	84	5884	153	80	3661	
14	165	79	3890	249	82	5971	169	80	4051	
15	159	81	3819	201	89	4814	158	75	3785	
16	190	87	4557	187	77	4500	163	79	3908	
17	161	85	3854	201	77	4820	259	115	6211	
18	252	117	6057	188	76	4521	439	140	10539	
19	371	143	8912	193	77	4622	243	88	5834	
20	243	86	5827	215	108	5153	214	78	5143	
21	200	82	4806	172	88	4121	207	79	4968	
22	185	85	4383	152	75	3637	184	78	4427	
23	281	138	6752	176	75	4220	172	73	4127	
24	184	84	4419	186	74	4457	169	70	4045	
25	N/A	N/A	N/A	167	77	4001	159	71	3827	
26	N/A	N/A	N/A	171	80	4114	158	71	3790	
27	N/A	N/A	N/A	160	77	3848	156	69	3745	
28	N/A	N/A	N/A	163	78	3916	153	71	3668	
29	N/A	N/A	N/A	155	79	3730	149	64	3587	
30	N/A	N/A	N/A	168	81	4037	150	59	3603	
31	N/A	N/A	N/A				144	62	3462	
Average	198.17	91.29	4744.46	190.40	85.77	4567.83	185.10	81.52	4441.00	
Minimum	154	69	3698	108	73	2595	144	59	3462	
Maximum	371	143	8912	451	143	10722	439	140	10539	

	Effluent Pipeline Flow				Effluent Pipeline Flow	I	Effluent Pipeline Flow			
		Jan 2020			Feb 2020			March 2020		
Day	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	
	m³/hour	L/s	m³	m³/hour	L/s	m³	m ³ /hour	L/s	m³	
1	135	54	3244	154	75	3688	161	82	3858	
2	143	65	3420	155	76	3727	147	82	3527	
3	142	65	3400	142	62	3409	135	76	3233	
4	162	79	3893	152	72	3649	160	82	3837	
5	148	58	3548	145	64	3474	148	80	3561	
6	146	80	3511	156	80	3738	141	79	3396	
7	142	55	3420	144	80	3458	160	83	3852	
8	144	55	3453	152	71	3647	157	80	3772	
9	142	60	3401	160	78	3850	154	85	3703	
10	144	68	3449	149	66	3586	150	81	3594	
11	149	71	3566	142	64	3411	139	81	3346	
12	146	55	3494	144	80	3451	149	84	3585	
13	187	130	4492	146	80	3508	148	77	3550	
14	75	54	1810	138	77	3302	159	83	3809	
15	34	18	818	154	77	3695	158	77	3780	
16	68	42	1621	153	70	3672	150	76	3608	
17	98	48	2363	142	77	3404	141	76	3393	
18	149	76	3577	194	112	4659	154	81	3695	
19	144	67	3458	155	80	3725	151	71	3613	
20	154	72	3691	154	81	3691	154	75	3690	
21	148	69	3549	149	75	3571	155	79	3709	
22	142	57	3407	170	80	4077	164	67	3927	
23	143	62	3429	262	114	6297	137	69	3282	
24	163	72	3905	166	85	3987	191	87	4580	
25	155	76	3723	152	82	3643	158	76	3792	
26	151	72	3632	157	81	3761	158	71	3792	
27	154	74	3708	143	80	3437	204	131	4898	
28	142	69	3413	148	75	3555	160	127	3836	
29	150	63	3606	155	76	3709	340	135	8150	
30	145	73	3485				285	131	6838	
31	146	77	3497				206	83	4942	
Average	138.42	65.68	3322.03	156.31	78.28	3751.07	166.90	85.39	4004.77	
Minimum	34	18	818	138	62	3302	135	67	3233	
Maximum	187	130	4492	262	114	6297	340	135	8150	

		Effluent Pipeline Flow	I		Effluent Pipeline Flow	I	Effluent Pipeline Flow		
		April 2020			May 2020			June 2020	
Day	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	Average Daily Flow	Peak Hourly Flow	Total Daily Flow	Average Daily Flow	Peak Hourly Flow	Total Daily Flow
	m³/hour	L/s	m³	m³/hour	L/s	m³	m³/hour	L/s	m³
1	193	84	4629	157	77	3769	52	291	4506
2	179	74	4287	154	80	3700	52	287	4312
3	179	82	4284	241	142	5785	48	289	4155
4	177	84	4244	246	133	5895	45	283	
5	179	84	4288	142	79	3408			
6	166	82	3981	135	74	3251	28	290	
7	163	75	3914	83	46	1987	78	397	4309
8	173	80	4146	73	44	1757	58	302	5027
9	176	86	4225	75	41	1789	55	303	4769
10	172	84	4118	78	43	1882	53	305	4562
11	173	83	4149	67	42	1619	52	302	4480
12	164	80	3941	135	79	3239	48	298	4139
13	192	86	4604	167	78	4008	49	308	4272
14	162	74	3877	164	78	3945	53	313	4545
15	165	80	3967	165	77	3951	52	309	4536
16	161	83	3869	160	77	3839	63	385	5442
17	157	71	3773	175	82	4189	76	364	4574
18	165	78	3955	189	80	4545			
19	164	81	3947	168	81	4033			
20	156	79	3743	165	81	3965			
21	162	74	3889	154	73	3694			
22	152	74	3637	143	60	3435	101	417	3601
23	151	70	3632	163	80	3913	77	417	3985
24	158	74	3795	185	86	4449	71	343	4963
25	162	80	3894	407	135	9756	72	302	3413
26	155	74	3717	245	110	5177	71	288	3156
27	159	83	3821	202	80	3481	75	294	
28	164	82	3939	198	75	4560	72	294	
29	156	78	3746	224	80	3349	76	404	
30	156	77	3751	186	58	1869	68	288	
31	193	84	4629	208	80	3068	52	291	4506
Average	167	79	4013	169	78	3784	61	322	4363
Minimum	151	70	3632	67	41	1619	28	283	3156
Maximum	193	86	4629	407	142	9756	101	417	5442

Appendix ii: Biofilter Monitoring Report

Biofilter Monitoring

	July				August			September	
Day	Back Pressure	Moisture Content	рН	Back Pressure	Moisture Content	рН	Back Pressure	Moisture Content	рН
	kPa	%		kPa	%		kPa	%	
1	669.8			718.3			665		
2	668.7			699.9			701.3		
3	773.9	43.47	7.99	697.6			685.8		
4	714.9			701.6			714.7	44.86	7.87
5	694.3			712.4			811.4		
6	680.1			719.4			727		
7	679.3			722.3	44.49	7.79	733.9		
8	677.8			711.6			733.9		
9	671.5			707.4			721.5		
10	684.9	39.45	7.87	811.5			710.9		
11	679			796			700.9	39.37	7.71
12	714.6			823.5			692.3		
13	713.5			697.2			745.4		
14	768.6			677.3	44.77	7.71	798.7		
15	747.3			656			766.9		
16	757.6			685			708.4		
17	746.7	36.11	7.88	921.2			714.5		
18	736.4			795.3			705.3	41.07	7.69
19	773.3			761.9			704.9		
20	822.1			780.7			704.9		
21	752.3			809.3	41.28	7.84	700.3		
22	705.9			747.5			684.2		
23	716.1			715.9			688.3		
24	735.7	46.77	7.87	724.5			693.4		
25	740.7			697.3			671.2	45.49	7.94
26	737.3			727.9			671.2		
27	727.8			727.4			674.9		
28	727.4			706.4	41.68	8.07	668.4		
29	713.7			708.9			672.3		
30	718.7			670.2			686.1		
31	738.1	38.28	7.94	665			665		

		October		November			December		
Day	Back Pressure	Moisture Content	рН	Back Pressure	Moisture Content	рН	Back Pressure	Moisture Content	рН
	kPa	%		kPa	%		kPa	%	
1	746.1			616.6			593.5		
2	746.1	46.1	7.905	612			600.2		
3	718.5			638.3			651.2		
4	659.3			636.8			623.2	54.38	7.945
5	765.8			636.6			629.5		
6	698.7			612	53.34	7.65	616.7		
7	671.3			600.3			717.7		
8	662.2			607.4			812.4		
9	636.1	47.66	7.55	640.2			687.4		
10	686.6			712			659		
11	653.9			732.6			628.4	39.48	7.825
12	608.3			650.9			611.9		
13	581.1			643.6	44.87	7.905	598.2		
14	549.1			655.4			591.8		
15	542.9			621.6			590.1		
16	563.1	45.78	7.93	617.9			695.7		
17	532.2			616.5			829.4		
18	301.4			630			749.9	45.44	8.085
19	607.3			606.4			688.2		
20	581			640.5	48.76	7.975	720		
21	575.7			640.5			675.9		
22	605.9			614.4			636.7		
23	653.1	38	7.025	591.3			636.6		
24	640.3			569.4			613.3		
25	634.1			595.6			583.9		
26	625			612.1			551.8		
27	631.7			594.5	41.45	7.905	507.2		
28	627.7			594.4			485.6		
29	611.4			597			465.4		
30	614.2	47.68	8.085	582.3			465.5		
31	615.6			616.6			460.1		

		Jan			Feb		March				
								Biofilt	er 1	Biofi	ilter 2
Day	Back Pressure	Moisture	nH	Back Pressure	Moisture	nH	Back Pressure	Moisture	рН	Moisture	nH
	Back Tressure	Content	pii	Buck Tressure	Content	pii		Content		Content	Pi
	kPa	%		kPa	%		kPa	%			
1	460			568.9			569.0				
2	453.7			568.9			574.3	56	7.72	67	7.79
3	475.6			580.3			581.1	66	7.49	60	7.83
4	475.9			584.3			579.4	65	7.33	58	7.62
5	466.9			586.6	48.1	7.65	587.4	57	7.66	70	7.45
6	461.2			578.6			579.3	56	7.75	55	7.78
7	447.3			575.9			578.5				
8	445.1	39.11	7.9	587.2			580.6				
9	453.3			581.4			586.4	53	7.52	69	7.27
10	454.8			581.6			582.3	70	7.78	48	7.97
11	446.2			588.6			585.9	56		48	
12	402.2			589.8	43.89	7.395	590.6	64	7.47	59	7.78
13				594.2			591.4	57	7.51	50	7.56
14				596.6			594.2	59	7.33	72	5.99
15	350	46.99	7.675	592			595.7	64	7.05	66	7.41
16	448.3			593.4			594.6	64	7.78	49	8.12
17	387.4			604.4			601.8	61	7.57	53	7.66
18	521.8			673.2			658.6	62	7.73	61	7.24
19	550			643.9	43.93	7.38	643.9	68	7.46	52	7.64
20	545.8			628.8			634.1	58	7.60	46	7.43
21	537.5			653.9			639.3	45	7.24	53	6.06
22	529.8	41.48	7.665	712.6			652.5	57	7.54	66	6.98
23	527.1			687.1			738.6	52	7.49	57	7.63
24	542.6			662.2			666.7	61	7.61	50	7.86
25	545			659.2			657.1	61		56	
26	559.1			645.9	45	7.715	656.4	62		61	
27	575.5			639.7			645.1	59		39	
28	568.5			635.6			636.0	61		58	
29	577	52.61	7.44	645.1			642.0	55		50	
30	569.7						633.4	56		47	
31	564.3						639.1	57		48	

	April					Мау					June				
	Backpressure	Biofi	lter 1	Biofi	lter 2	Backpressure	Biofi	ter 1	Biofi	ter 2	Backpressure	Biofilt	er 1	Biofilt	er 2
Day	Daily Ave	Moisture	pН	Moisture	pН	Daily Ave	Moisture	рН	Moisture	рН	Daily Ave	Moisture	рН	Moisture	рН
		Content		Content			Content		Content			Content		Content	
	kPa	%	-	%	-	kPa	%	-	%	-	kPa	%	-	%	-
1	305.3	61		57		598.9	43	8	35	8	720.2	63.1	7.6	51.6	7.9
2	682.9	58	8	48	8	582.8	64	8	47	8	736.7	51.5	7.9	58.7	8.0
3	695.8	72	8	57	8	680.9	58	8	55	8	706.3	45.8	7.9	60.6	8.0
4	673.8	55	8	47	8	718.3	65	8	59	7	835.8	37.2	8.0	61.4	7.9
5	686.5	63	7	59	8	743.0	42	8	43	8	805.2	74.3	7.8	82.2	7.8
6	576.5	51	8	54	8	652.8	58	8	62	8	745.6	74.3	5.6	64.8	7.1
7	669.4	61	8	59	8	633.3	64	8	57	8	775.1	71.3	6.1	59.5	7.2
8	684.3	63	8	54	8	638.3	52	8	49	8	718.7	50.6	7.9	54.2	8.0
9	670.5	37	8	60	9	640.2	56	7	63	8	642.9	56.5	8.1	57.8	8.1
10	616.5	47	7	51	7	644.3	65	7	63	7	659.6	38.1	7.8	64.9	8.1
11	621.9	46	8	51	8	636.8	59	8	49	8	669.1	56.0	7.8	60.7	7.9
12	581.4	65	8	57	8	650.0	63	8	56	8	676.5	61.0	8.0	57.6	7.6
13	600.3	57	7	62	8	675.8	53	8	55	8	679.5				
14	558.8	59	8	47	8	672.0	48	8	61	8	684.0				
15	530.7	53	8	48	8	675.9	63	8	56	8	702.8	45.3	8.0	60.6	7.3
16	609.2	41	8	72	8	675.5	42	8	40	8	762.3	59.5	8.0	56.4	7.9
17	651.9	68	8	59	8	679.9	79	8	84	7	779.0	62.0	7.7	57.4	7.8
18	670.7	65	8	61	8	679.0	47	8	64	7	1011.5	54.7	7.7	46.0	8.1
19	662.6	56	7	59	8	654.4	57	8	59	8	910.5	57.3	7.7	57.4	7.8
20	658.0	57	8	53	8	628.8	62	8	62	8	848.9				
21	611.5	45	8	39	8	622.8	63	8	49	8	831.4				
22	615.3	65	8	58	8	623.8	48	8	54	7	726.4	68.5	8.0	46.7	8.1
23	586.7	59	8	60	8	624.7	46	8	60	7	710.8	61.8	7.7	49.9	8.0
24	615.0	58		37		642.1	48	7	58	7	753.2	50.9	8.0	53.4	8.0
25	627.7	63	7	61	8	813.3	63	8	42	8	769.2	55.9	7.6	55.2	7.9
26	632.1	61	8	54	8	678.7	55	8	55	8	741.3		7.7	48.3	7.8
27	646.1	66	8	67	8	685.3	52	8	58	8	737.2				
28	657.0	55	8	58	8	705.6	54	8	47	8	755.5				
29	563.2	56	8	50	8						828.8				
30	609.9	69	8	66	8						770.2				
31	305.3	61		57							720.2	63.1	7.6	51.6	7.9

Veolia Water Australia and New Zealand

Western Wastewater Treatment Plant Annual Biofilter Assessment Report – December 2019

Control Sheet

DOCUMENT TITLE: Western Wastewater Treatment Plant Annual Biofilter Assessment Report – December 2019

PREPARED BY: Ticha Mundra

REVIEWED BY: Phil Love

AUTHORISED BY: Stuart Pearce

DOCUMENT CONTROL REGISTER

Version	Status	Date	Details of Revision
1	Final	19/12/2019	First issue - Assessment Report

Annual Biofilter Assessment Report

WESTERN WASTEWATER TREATMENT PLANT

Table of Contents

DO	CUME	IENT CONTROL REGISTER	2
1.	Intro	roduction	4
2.	Lega	gal Framework	4
3.	Mec	edia Assessment	5
3	8.1	General	5
3	8.2	Effective Media Depth	5
3	8.3	Media Temperature	6
3	8.4	Media Descriptions and Samples	6
	3.4.3	I.1 Cell 1 Description	7
	3.4.2	I.2 Cell 2 Description	7
	3.4.3	I.3 Media Sample Results	9
4.	Smo	noke Test	10
5.	Com	mplaints	14
6.	Ope	erating regime	14
7.	Mor	onitoring regime	14
8.	Sum	mmary	14
9.	Арре	pendix A – Bio filter analytical report	15

1. Introduction

This report is undertaken to comply with the requirements of Condition 4 of Resource Consent WGN060283 [25230].

To minimise the impact of operation of the Western Treatment Plant (WTP) on its surroundings a biofilter is used to clean the air before discharge to the atmosphere. The biofilter bed consists of moistened Compost, lime and bark mixture which will encourage biological growth and ensure maximum odour is removed.

Odorous areas of the plant are covered to prevent the odour spreading throughout the plant. Two centrifugal fans are used to extract the foul air from the building via fibreglass ducting to the two biofilters approximately 80 metres away.

A water sprinkler system maintains the moisture levels within the filter beds, any excess water flows to the drain water traps and then to the sewer. The sprinkler system is operated from a timer of which the frequency is controlled by the site operator, dependant on the climate conditions.

2. Legal Framework

Condition 4 of Resource Consent WGN060283[25230] states:

The permit holder shall undertake a comprehensive assessment of the quality of the biofilter media on an annual basis (or more frequently if appropriate).

The results of this assessment, including a summary of the findings, details of any action(s) to be taken to improve the efficiency of the biofilter, and a timetable for those actions to be undertaken, shall be submitted to the Manager, Environmental Regulation, Wellington Regional Council within one month of the assessment being undertaken.

Actions to be undertaken may include, but are not limited to:

- a) Turning, restructuring and dampening of the bed material,
- b) the addition of supplementary bed material, or
- c) total bed material replacement.

The first assessment shall be undertaken within three months of the granting of this permit. Subsequent assessments shall be undertaken annually thereafter.

3.1 General

Ticha Mundra carried out the media assessment on the 12th November 2019.

The weather conditions at the time of the assessment were clear with a light Northerly wind of 1 - 2 knots, and an ambient air temperature of 12 Degrees Celsius.

The process involved the determination of biofilter cell effective media depth, media temperature and the collection of media samples for pH, moisture content and total bacteria count analysis.

Figure 1 Western Wastewater Treatment Plant Biofilters

3.2 Effective Media Depth

The depth of the media is an indicator of how it has slumped over time.

Cell 1:

In 2015 at the time of installation the media consisted of a 75% 25-50mm bark nuggets, 20% compost and 5% Agrilime mix, the compaction ratio was 1.3 and the voids where 35% with a finished level equal with the top of the filter surround. Which give a media treatment depth of 1.3m.

Over time there has been slight settlement of approximately 0.05m.

Cell 2:

The 25mm bark chip media has been in place since 2011. In late 2015 eight cubic metres of 15mm agrilime was mixed into the media to raise the pH, and improve the void percentage. Pre-lime inclusion, the void test indicated 12.9%, and post lime, the newly mixed media indicated 18% voids.

On the day of this inspection the bed media was showing limited slumping from the previous year. There was still a good distribution of lime and no indication of short circuiting.

3.3 Media Temperature

The temperature of the biofilter media is measured using analog display thermocouple thermometers, which are inserted approximately 1 metre into the biofilter media bed, at a depth of 300mm to 400mm

On the day of the assessment, Cell #1 and #2 both indicated a temperature of 14 Deg/C.

Figure 2: shows the positions of the temperature probes in relationship to the biofilters, the temperature probes give a constant reading, however it is not trended on the SCADA.

Figure 2 Temperature Probe locations

3.4 Media Descriptions and Samples

Media condition assessment included an assessment of the media itself and also an examination of the biofilter surface to look for any signs of short circuiting. On the 12th December 2019 a total of two media samples were collected from the centre of the biofilter cells at depths of 100 mm. Samples were delivered to the laboratory for pH, moisture content and total bacteria count on the day of collection.

3.4.1 Cell 1 Description

Figure 3: Depicts Cell 1 of the biofilter. The cell consisted of 25-50mm bark nuggets with 20% top quality compost and 5% agricultural lime. There a small amount of weed growth over the surface of the biofilter mostly concentrated on the north east corner on the day of the inspection.

Regular testing throughout the year for pH, moisture and aerobic plate count indicated no areas of concern.

Figure 3 Cell 1 Biofilter Media Sample Point

3.4.2 Cell 2 Description

Figure 4: Depicts Cell 2 of the biofilter. This cell consisted of 25mm bark nuggets partially degraded since 2011 and had been boosted by the inclusion of more lime nuggets in December 2015. The cell was turned completely in 2016 right down to the blinding layer.

On the day of the assessment there was no indication of short circuiting and no rogue odour was detected. The weed growth on top is more substantial than cell 1 and the thicker areas of weed appeared to have less smoke passing through during the test as shown in figure 8 (page 12). This did not appear to have any deleterious effect on treatment.

Figure 4 Cell 2 Biofilter Media Sample Point

3.4.3 Media Sample Results

Table 2 below presents the results of the pH, moisture content and total bacteria count analysis from Cells 1 and 2 at a media depth of 100mm. The analysis was performed by Eurofins ELS Ltd, an IANZ accredited laboratory, using the following methods:

Table 1: Analytical methods used

Test	Methodology	Detection limit
рН	Soil Suspension /ph Meter. ANZECC GUI 624.131.37	0.1
Moisture	APHA online Edition Method 2540 B.A)AC 20th Edition (online version) 950.46B(a)	0.1%
Aerobic Plate Count @ 35 ⁰ C	APHA-Compendium,4thE,Ch6.331, 7&23:2001	10 Cfu/g(mL)

Table 2: Biofilter Media Analytical results

Cell No. and Depth	рН	Moisture Content (% by weight)	Aerobic Plate Count @ 35 ⁰ C (Cfu/g)
Cell 1 100mm	7.8	64.8	13000
Cell 2 100mm	8	60.7	35000

Overall the varying results do not create a problem as the biofilter still successfully treats the foul air from the building and there is no foul air discharge from either Cell.

4. Smoke Test

On the day of the assessment a smoke test was performed to verify that negative pressure is maintained throughout the system. **Figures 5, 6, 7** and **Figure 8** illustrate the smoke test process.

Figure 5 Demonstrates the smoke introduced into the building by a smoke machine in the centrifuge room.

Figure 6 Demonstrates the smoke evacuating from the skip bay via the ducting to the biofilter.

Figure 7 Cell 1 smoke test

Figure 8 cell 2 smoke test

Due to the operational maintenance and the innovative air lateral plenum system installed, cell #1 in 2015 and cell #2 2011, the air extraction from the building is noticeably reducing the risk of odour and corrosion to assets. The biofilters #1 and #2 are treating the odourous foul air from the building as required by the consent.

5. Complaints

No odour complaints to-date received during 2019.

6. Operating regime

At present, both cells are in operation treating the building foul air before discharge to the atmosphere.

7. Monitoring regime

In addition to weekly visual checks, Veolia actively monitors the moisture content and pH on a weekly basis and will adjust the watering rate of the biofilter, particularly over the winter months.

8. Summary

- Since the assessment in 2018 the aerobic plate counts have remained constant to indicate good treatment performance in both cells.
- The bed media in both cells showed limited / sight slumping from the previous year.
- No indication of short circuiting from either cell.
- The building smoke test performed verifies that negative pressure is maintained throughout the system.
- Overall both cells are treating the foul building odour.
- No Odour complaints were received during the year of 2019.
- Bio filter water spray system refurbished.

🔅 curofins		Euro	ofins ELS L	imited			
Veolia Water - W PO Box 3253 WELLINGTON 6 Attention: Stuart Pe	/ellington 140 arce		Report f	Number: 19/86982 Issue: 1 8 December 2019			
Sample Site 19/66962-01 Wes Notes: Side 1 Ves	stern Biofliter	Map WE	SSF11A	Date Sampled 12/12/2019 11:0	Date 10 13/12	Received 2019 10:2	Order No. W
Test 0057 Moisture 0780 pH M13004 Apparable Plate (Rest 64.8 7.8	unt U %	inits bulgerini)		Test Date 17/12/2019 18/12/2019	Signato Marylou Marylou	ry Cabral KTP Cabral KTP Jamayo KTP
Comments:			arg(mc)		10/12/2015	Juana	
* Not an accredited test.							
Sampled by customer using i Test Methodology:	ELS approved cont	ainers.					
Test				Methodology			Detection Limit
Molature		APHA Online Edition Meth	od 2540 E. ACAE 20h S	(noisrev enline) (osilae)	250.45 B(s).		0.1 %
рH		Soll Suspension(pH Meter	ANZECC GUI 624.131.	37.			0.1
Anserable Plate Count		APHA-Compendium,4thE,	CH8.231,7423:2001				10 efuig(mL)
Samples will be retained for a This laboratory is accredited Accreditation Co-operation M accreditation, with the except This report may not be repro-	a period of time. In i by International Acc tutual Recognition / tion of tests marked duced except in full	suitable conditions ap creditation New Zeala Arrangement (ILAC-/ I 'not IANZ', which ar without the written aj	propriate to the ar and and its reports (RA). The tests reg re outside the scop pproval of this labo	alyses requested are recognised in orted have been e of this laborator matory.	all countries affiliated performed in accorda y's accreditation.	Regert Re I to the linter ince with ou	Reterent By In Descen mational Laboratory r terms of
	Veili 53 Port Res Lover H Phone: (34	ngton Id, Seeview Mi 5045 976-9016	Rolleston 43 Detroit Drive Rolleston 7675 Phone: (03) 343-522	7 5	Duredin 16 Lone Street South Duredin 9012 Hone: (03) 972-7963	Pa	Page 1 of 1 port Number: 19/05952-1 ELS 15 December 2019 14:22:51

Eurofins ELS Limited

Analytical Report

Report Number: 19/66985 Issue: 1 18 December 2019

PO Box 3253 WELLINGTON 6140				
Attention:	Stuart Pearce			
Sample	Site	Ma		
19/66985-01	Western Biofilter	WE		
Notes: Side 2				

Veolia Water - Wellington

Sample		site		Map Ref.	Date Sampled	Date R	ecelved	Order No.
19/66985	-01	Western Biofilter		WESSF11A	12/12/2019 11:00	13/12/2	019 10:20	w
Notes: Sk	de 2							
	Test		Result	Unite		Test Date	Signatory	
0087	Molsture		60.7	%		17/12/2019	Marylou Cab	al KTP
0780	pН		8.0			18/12/2019	Marylou Cab	ral KTP
M1300A	Anaerobic Pla	te Count	35,000	cfu/g(mL)		13/12/2019	Juana Tamay	/0 KTP

Commente:

* Not an accredited test.

Sampled by customer using ELS approved containers.

Test Methodology:

Test		Wethodology	Detection Limit
	Moisture	APHA Online Edition Nethod 2540 E. ACAE 20th Edition (online version) 950.45 E(s).	0.1 %
	рH	Sell SuspensionigH Meler. ANZECC GUI 624.131.37.	0.1
	Anserobic Plate Count	APHA-Compandium,4H5,CH5.231,7423:2001	10 etuig(mL)

Unless otherwise stated, all tests are performed in Weilington.

The laboratory is not responsible for the information provided by the customer which can affect the validity of the results.

"<" means that no analyte was found in the sample at the level of detection shown. Detection limits are based on a clean matrix and may vary according to individual sample.

g/m3 is the equivalent to mg/L and ppm.

Samples will be retained for a period of time, in suitable conditions appropriate to the analyses requested.

egort Releas

Rob Desco

This laboratory is accredited by international Accreditation New Zealand and its reports are recognised in all countries affiliated to the international Laboratory Accreditation Co-operation Mutual Recognition Arrangement (ILAC-MRA). The tests reported have been performed in accordance with our terms of accreditation, with the exception of tests marked "not IANZ", which are outside the scope of this laboratory's accreditation.

This report may not be reproduced except in full without the written approval of this laboratory.

Weilingto 55 Port Road, Seaview Lower Hult 5045 Phone: (04) 576-5016

Rollegton 43 Detroit Drive Rolleston 7675 Phone: (03) 343-5227

Dunedir 16 Lorne Street with Durnedin 9012 Phone: (03) 972-7963

Page 1 of 1 Report Number: 19/00905-1 ELS 15 December 2019 14:22:51

ala <u>bin</u>Ov refina. Appendix iii: Western Treatment Plant: Annual Outfall Pipeline Report

Annual Report: Western Treatment Plant:

Outfall pipeline maintenance. 1st August 19 to 31st July 20

Condition 23 of Consent No. WGN060283 [35255]

Contents

1	Introduction	3
2	General Pipe Repairs between 1 st August 2019 to 31 st July 2020	4
	Following Annual Inspection January 2019	4
	Track Repairs	6
	Stabilization Works	6
	Vegetation Clearance Works	6
	Summary of Operational Programming	7
3	Planned Works for 1 st August 2020 to 31 st July 2021	8
Ap	opendix 1	23
	Western treatment plant outfall pipeline plan	23
Ap	opendix 2	25
	· Indicative Photos	25

1 Introduction

This report details the maintenance works undertaken on the Western Treatment Plant outfall pipeline as part of condition 23 of the resource consent WGN060283 [35255] and covers the period between 1st August 2019 to 31st July 2020. Figure 1 below is a copy of condition 23 for reference.

The outfall pipeline is 6.25km long, whose alignment generally follows the Karori stream. It is an ageing concrete pipeline, having been built in the 1930's. Over the past year the 381mm inner diameter pipe carried on average between 50-200m³/hour of treated effluent from the treatment plant to discharge into the Cook Strait. A plan detailing its alignment, including reference chainage, is found in Appendix 1.

Because the majority of the pipeline is adjacent and accessed via the stream, there are corresponding Resource Consents to enable pipeline maintenance. These consents have been changed in 2017 year a hearing relating to the removal of the section regarding the renewal of the pipeline by 2023. The original consent WGN160340 [34178] & [34179], and subsequent changes in WGN060283 [35255], permits both land use consent to undertake works in the Karori Stream bed and water use consent to temporarily and permanently divert the flow of water. All maintenance works on the outfall pipeline are done in accordance with the associated Management and Monitoring Plan. Example photos of the various maintenance works are found in Appendix 2.

Figure 1 Copy of Condition 23

23. The permit holder shall submit an **annual report** for the main outfall pipeline, which addresses activities undertaken during the previous year, to the Manager, Environmental Regulation, Wellington Regional Council and members of the CLG, by 31 July each year.

This report shall include, but not be limited to, the following elements:

- a) details of the location, extent and duration of any leakage or faults, and the timing, nature and success of remedial action taken to remedy the leaks or faults;
- b) details of any other works (including any repairs and replacements) undertaken during the past year; and
- c) any work planned in the next 12 months to repair or replace the pipeline.

2 General Pipe Repairs between 1st August 2019 to 31st July 2020

Following Annual Inspection January 2019

On 30th January 2019 the Western Treatment Plant main outfall pipe was inspected as part of scheduled annual maintenance. Table 1 below is the list of items found relative to the pipeline itself. All leaks were minor and occurred either at a join in pipe sections or at a manhole connection.

Only the above ground sections totaling approximately 2370m long, were inspected for condition and leakage. The remaining buried sections, totaling approximately 3880m in long, were not inspected but water samples were taken where feasible where there were indicators for potential leakage.

Table					
No	Chainage	Comments	Actions	Photos (before)	Photo (after)
1	1300	Leaking manhole structure	Seal manhole structure to stop leak		No photo provided

Table 1.

2	4175	Pipe was displaced from manhole structure	Reattach pipe to manhole structure and seal to stop leak	
3	6200	Cavity forming in Manhole Structure, causing pipe to leak	Sealed manhole structure	

Track Repairs

Maintaining access via the stream crossing is undertaken between the outfall end (ch0) and ch 4000, where vehicle access is possible. This work was carried out from Sept-Dec 2019.

Stabilization Works

Stabilization works were completed at chainages 6150. Scouring of the bank beneath the manhole structure at 6150 required stabilization of an approximate 2 metre long by 1 metre high section of bank. The scouring issue was addressed by the placement of boulders.

Vegetation Clearance Works

Vegetation has been cleared where needed to carry out maintenance activities to pipeline during Sept-Dec 2019.

WTP outfall⁶pipe maintenance works 2019-2020

Summary of Operational Programming

Bulleted below is the timeline summary of works completed leading up to and over this period, and in around other priority works across the wellington region;

- Sept-Dec 2019. Repairs and track works identified during the 2018-19 annual walkover were carried out.
- 24th/25th June 2020. Annual walkover completed
- 25th-30th June 2020. Track works identified during annual walkover begins

3 Planned Works for 1st August 2020 to 31st July 2021

The list below summarizes the planned works for the upcoming year, as identified during the annual walkover on 24th/25th June 2020:

- Complete the minor leak repairs as deferred to July/August 2020.
- Inspect the surge chamber at ch100.
- Inspection of tunnels at ch1350-1500 and 4400-4450.
- Complete track repair works
- Complete vegetation clearing
- Clear debris away from pipe bridge supports in stream

Table 2 on the following page offers an overview of each issue/repair that has been identified.

No.	Chainage (m)	Comments	Actions	Photo
1	160	Surge Tank at Outfall needs to be checked	Check surge tank using digger, tracks will need to be cleared to allow digger access. This will be weather permitted.	Surge tank at outfall

Table 2 Faults identified from the annual inspection for above ground sections of pipe

WTP outfall⁹pipe maintenance works 2019-2020

2	180	Possible minor leak from	Further inspection	a martin a superior of the
		pipe structure, no sample	required to determine	
		taken as flow	if this is seepage or	
		insufficient.	sewer leak.	
				and the second
				A STATE OF A
				and the second
				Martin Martin Contraction
				a the fatter of the second of the
				Pipe leaking 2100

WTP outfal¹⁹pipe maintenance works 2019-2020

WTP outfal¹ pipe maintenance works 2019-2020
4	850	Manhole lid is not secure	(Optional) Replace existing manhole lidcover at the Outfall flow meter with a hinged lid for easier access	Paratar concuttant-trome menant Concusto and contrapation and Concusto and contrapation an
5	900	Debris has accumulated around pillars, this could cause the stream to change direction. In turn concentrating the flow and could scour out the bank resulting in the pipe structure being undermined within the bank.	In the stream, gravel needs to be redistributed to form a larger channel to better distribute flow across the whole stream span back to its normal path.	

6	1500	Gravel has accumulated around entrance to tunnel	Remove and clear gravel and debris around tunnel entance.	Gravel selvis baitcup @ timel recute 1500
7	1580	Possible minor leak from pipe structure, no sample taken as flow insufficient. Vegetation needs clearing	Further investigation required to determine if this seepage or sewer leak.	Presidente lead © 1580

8	1650	Possible minor leak from pipe structure, no sample taken as flow insufficient	Further investigation required to determine if this seepage or sewer leak.	Passible leak of 10-00
9	1860	Vegetation growing on manhole, possible leak from manhole structure	Clear vegetation from manhole structure. Further investigate whether structure leaking	

10	1880	Vegetation growing on manhole, possible localised scouring	Clear the vegetation around the manhole and fill in localised scouring to restablise bank.	
11	1900	Pipe Undermined for 1.5m	Evaluation of the pipe has deemed inconsequential disruption to the integrity of the pipe. structure. This will be monitored .	Undemmed @ 1920

12	1920	Slip on pipe, looks to be historical. With no sign of leaks or disturbance to the integrity of the pipe structure.	This is to be monitored.	Clip on pipe @ Math
13	2150	Joint mortaring has flaked off on exposed section of pipe. This has no impact on the pipe integrity with the pipe joint still in place.	No further action required.	

14	2450	Weeping manhole structure, the seepage flow was insufficient to be able to get sample.	Further investigation required to determine if this is pipe leaking or natural seepage.	
	3050	Access track washed away, needs re- establishing	Suitably restablish track.	Arcesettoder breves tegals eref ford to deep @ 7050

WTP outfal¹⁸pipe maintenance works 2019-2020

	3150-3500	Vegetation covering length of above ground pipe section	This section needs to be cleared to allow access to pipe for inspection	vegelation needs clearing 9 5150
15	3590	Weeping manhole structure, the seepage flow was too insufficient to get sample.	Further investigation to determine if it is natrual seepage or pipe leak.	
	3750	Large potholes in track	The track to be suitably reinstated.	Lack Pear needed @3750

16	4200	Debris has built up on bridge pillars	Remove debris infron of pillars to prevent future stream scour out.	Crossing 8 4200
17	4300	Manhole structure potentially has a minor localised leak, flow is too insufficient to take sample.	Further investigation required to determine if this is natural seepage or pipe leak.	

WTP outfalf pipe maintenance works 2019-2020

18	4325	Fallen logs blocking access to pipeline and high rainfall could have potential to cause damage to pipe structure.	Remove logs and other vegetation.	
19	4550	Section is being undermine. This slip looks to have stabilised itself over time with rock underneath the historic washout.	To monitor for any further movement or washout.	

WTP outfalf pipe maintenance works 2019-2020

20	6100	Manhole structure possibly leaking @ 5l/min. This looks as though the leak is starting to scour out bank.	Organise immediate repair and clear debris. Once debris cleared determine methodology to stablise bank.	Ntarthor structure besking been
21	6250	Vegetation buildup at foot of pillar	Clear vegetation around pillar.	

*Those not yet completed have been deferred to 2020-2021.

Appendix 1

Western treatment plant outfall pipeline plan

WTP outfal**f p**ipe maintenance works 2019-2020

Western Wastewater Treatment Plant Pipeline & Outfall

WTP outfall pipe manthematic works 2019-2020

Appendix 2

Indicative Photos

Appendix iv: Western Treatment Plant: Annual Inflow and Infiltration Report FY2019/2020

Condition (12)

The permit holder shall provide the Manager, Environmental Regulation, Wellington Regional Council with an annual report detailing what steps have and will be taken to reduce infiltration and stormwater ingress into the Karori sewerage network.

The report shall be submitted to the Manager, Environmental Regulation, Wellington Regional Council by 31 July each year and shall include, but not be limited to, the following information:

- a) Details of works that have been undertaken and what these works are expected to achieve;
- b) An indication of when any ongoing works will be completed;
- c) Details of any investigations undertaken with regard to inflow and infiltration in the Karori catchment; and
- d) Details of any works or investigations planned for the next financial year.

Note: One annual inflow and infiltration report may be submitted to the Manager, Environmental Regulation, Wellington Regional Council to meet the requirements in this regard of permits WGN060283 [25226], [25227], [35674] and [25229].

Inflow and Infiltration Report

A variety of mitigation measures have been undertaken to reduce inflow and infiltration (I/I) and to contain wastewater within the reticulated wastewater network. This work aims to reduce the demand on the Western WWTP and to also improve waterway health. Sections a,b,c and d of Condition 12 are addressed below for the various activities or work programs relating to inflow and infiltration.

Inflow Surveys

Inflow Surveys have been undertaken in 2018-2019 for two Karori Sub-Catchments referred to as 18SK and 400SK. These sub-catchments were identified from an initial Rainfall Derived Inflow and Infiltration (RDII) assessment utilising short term flow monitoring data.

In 2019-2020 faults have been followed up on and are in the process of being finalised with private property owners. The final re-inspections for properties with outstanding faults are being undertaken in August 2020. The public faults identified from the inflow surveys are also being followed up on. These faults included manhole repairs and suspected public faults requiring further investigation to determine if maintenance or repairs are required.

The inflow surveys conducted utilise smoke testing and in some cases dye testing and CCTV which generally identify faults that contribute to inflow. In 2020-2021 there are plans to expand private property fault identification to include lateral testing utilising CCTV and hydrostatic methods for a sample of properties within Karori with the aim to identify faults in laterals which contribute to infiltration.

Previous Inflow and infiltration investigations in the South Karori Road catchment identified stormwater entering the wastewater network through an overflow pipe outside 115 South Karori

Road which occurred in heavy rain events. Reflux valves were installed which assisted in reducing the number of overflows.

Flow Monitoring and Rain Gauge Monitoring

There are currently two flow monitoring sites in the Karori catchment. Karori Class (WW35469) was installed in March 2019 and Karori Net (WW20420) was installed in January 2019. These flow monitors are expected to remain installed until June 2021 with the results utilised for measuring the effectiveness of inflow and infiltration reduction works.

There are two long term overflow monitoring sites at 62 South Karori Road and 115 South Karori Road. These overflow monitoring sites are part of the long term monitoring contract which will end in June 2021 and therefore reassessment of priority monitoring sites will be carried out to determine whether monitoring these sites will continue beyond June 2021.

There are currently two rain gauges monitoring data in Karori which include Kaiwharawhara Stream at Karori Reservoir and Karori Res RG at Montgomery Avenue.

Wastewater Modelling

The Karori wastewater model is currently being utilised by modelling consultants to undertake an optioneering exercise and develop a Network Improvement Plan in 2020-2021.

CCTV Inspections

There has been no planned CCTV works undertaken in the Wellington City Council area (including Karori) in 2019-2020. In 2020-2021 there are plans to reorganise the contract and to proceed with some planned CCTV work. At this stage it has not yet been determined which areas of WCC will be have CCTV carried out and whether the Karori Catchment will be nominated in the scope for 2020-2021.

Stormwater and Wastewater Capital Projects

Table 1 below provides a summary of capital projects for wastewater (reticulation and trunk network) and stormwater assets that were undertaken in 2019-2020 or planned for 2020-2021. Ongoing operational work such as investigations and reactive maintenance and renewals are also carried out in addition to the planned work listed below.

Activity	2019/2020	2020/2021
Karori Stormwater	• N/A	 Newcombe Cresent Stormwater
Karori Wastewater	 Upgrade of existing 1000 m³ Storage Tunnel (expected completion Aug 2020) 	 Relining of Wastewater Mains (approx. 1km) and manhole repairs

Table 1 - Capital Projects for Stormwater and Wastewater in the Western WWTP Catchment (Karori)

Appendix v: Western Treatment Plant: Karori Stream Monitoring

Karori Stream at Friend Street

Sample Date	Sample Time	Faecals	E. coli	Wind Direction	Weather
5/07/2019	11:50 AM	2200	2200	S	Overcast
25/07/2019	11:46 AM	910	910	Calm	Clear
5/08/2019	2:30 PM	2300	2300	Calm	Clear
20/08/2019	10:40 AM	240	230	Ν	Clear
3/09/2019	11:10 AM	510	510	S	Clear
19/09/2019	10:05 AM	80	64	Ν	Clear
1/10/2019	12:00 PM	1800	1800	S	Overcast
22/10/2019	12:20 PM	580	570	NW	Overcast
1/11/2019	9:03 AM	240	240	SE	Clear
15/11/2019	12:00 AM	140	140	NW	Clear
13/12/2019	9:45 AM	380	380	Calm	Clear
6/01/2020	11:35 AM	320	320	Calm	Clear
28/01/2020	9:20 AM	1400	1300	Ν	Clear
7/02/2020	11:10 AM	210	210	Calm	Clear
27/02/2020	10:41 AM	530	510	Ν	Clear
12/03/2020	9:56 AM	430	N/A	Ν	Overcast
26/03/2020	8:05 AM	2700	N/A	Ν	Cloudy
9/04/2020	7:40 AM	8700	N/A	S	Overcast
23/04/2020	7:35 AM	210	N/A	Ν	Rain
7/05/2020	7:06 AM	650	N/A	Ν	Clear
21/05/2020	7:09 AM	1100	N/A	Ν	Overcast
04/06/2020	7:15:00 AM	4200	N/A	Ν	Cloudy
17/06/2020	7:16:00 AM	1100	N/A	Ν	Overcast

Karori Stream at Campbell Street

Sample Date	Sample Time	Faecals	E. coli	Wind Direction	Weather
5/07/2019	11:45 AM	850	840	S	Overcast
25/07/2019	11:38 AM	680	660	Calm	Clear
5/08/2019	2:20 PM	<4	<4	Calm	Clear
20/08/2019	10:30 AM	52	44	Ν	Clear
3/09/2019	11:05 AM	2300	2200	S	Clear
19/09/2019	10:00 AM	3900	3800	Ν	Clear
1/10/2019	11:50 AM	1300	1000	S	Overcast
22/10/2019	12:30 PM	160	160	NW	Overcast
1/11/2019	9:11 AM	2900	2900	SE	Clear
15/11/2019	12:00 AM	1200	1000	NW	Clear
13/12/2019	9:40 AM	480	1300	Calm	Clear
6/01/2020	11:40 AM	380	370	Calm	Clear
28/01/2020	9:13 AM	670	140	Ν	Clear
7/02/2020	11:00 AM	2100	2100	Calm	Clear
27/02/2020	10:37 AM	880	870	Ν	Clear
12/03/2020	9:48 AM	480	N/A	Ν	Overcast
26/03/2020	7:55 AM	1400	N/A	Ν	Cloudy
9/04/2020	7:47 AM	9700	N/A	S	Overcast
23/04/2020	7:45 AM	3100	N/A	Ν	Rain
7/05/2020	7:15 AM	480	N/A	Ν	Clear
21/05/2020	7:17 AM	62	N/A	Ν	Overcast
04/06/2020	7:23:00 AM	710	N/A	N	Cloudy
17/06/2020	7:23:00 AM	1400	N/A	N	Overcast

Karori Stream at South Karori Road

Sample Date	Sample Time	Faecals	E. coli	Wind Direction	Weather
8/07/2019	12:45 PM	2100	2100	S	Clear
25/07/2019	10:20 AM	790	790		
5/08/2019	1:30 PM	280	280	Calm	Clear
20/08/2019	11:00 AM	420	420		
3/09/2019	10:10 AM	210	160	S	Clear
19/09/2019	8:30 AM	240	190		
1/10/2019	12:30 PM	140	110	S	Overcast
22/10/2019	12:45 PM	660	660		
1/11/2019	9:25 AM	170	170	SE	Clear
15/11/2019	12:00 AM	410	410		
13/12/2019	8:30 AM	130	130		
6/01/2020	10:50 AM	4000	4000	Calm	Clear
28/01/2020	8:12 AM	220	190		
7/02/2020	10:20 AM	240	240	Calm	Clear
27/02/2020	9:50 AM	170	170		
12/03/2020	9:15 AM	250	N/A	Ν	Overcast
26/03/2020	8:13 AM	430	N/A	Ν	Cloudy
9/04/2020	7:56 AM	41000	N/A	S	Overcast
23/04/2020	7:51 AM	200	N/A	Ν	Rain
7/05/2020	7:24 AM	390	N/A	Ν	Clear
21/05/2020	7:29 AM	110	N/A	Ν	Overcast
04/06/2020	7:32:00 AM	700	N/A	N	Cloudy
17/06/2020	7:32:00 AM	1500	N/A	N	Overcast

Karori Stream at approximately 100 metres upstream of the

Western Treatment Plant

Sample Date	Sample Time	Faecals	E. coli	Wind Direction	Weather
8/07/2019	12:30 PM	88	65	S	Clear
25/07/2019	11:10 AM	110	110	Calm	Clear
5/08/2019	1:50 PM	24	24	Calm	Clear
20/08/2019	11:10 AM	130	130	Ν	Clear
3/09/2019	10:25 AM	12	12	S	Clear
19/09/2019	9:10 AM	100	88	Ν	Clear
1/10/2019	12:20 PM	100	88	S	Overcast
22/10/2019	12:55 PM	120	120	NW	Overcast
1/11/2019	10:14 AM	42	42	SE	Clear
15/11/2019	12:00 AM	180	150	NW	Clear
13/12/2019	8:55 AM	140	140	Calm	Clear
6/01/2020	11:05 AM	65	46	Calm	Clear
28/01/2020	8:26 AM	81	77	Ν	Clear
7/02/2020	10:45 AM	120	120	Calm	Clear
27/02/2020	10:01 AM	92	92	Ν	Clear
12/03/2020	9:26 AM	140	N/A	Ν	Overcast
26/03/2020	8:28 AM	110	N/A	Ν	Cloudy
9/04/2020	8:12 AM	240	N/A	S	Overcast
23/04/2020	8:07 AM	120	N/A	Ν	Rain
7/05/2020	7:36 AM	300	N/A	Ν	Clear
21/05/2020	7:39 AM	48	N/A	Ν	Overcast
04/06/2020	7:43:00 AM	510	N/A	N	Cloudy
17/06/2020	7:53:00 AM	980	N/A	Ν	Overcast

Karori Stream at approximately 100 metres downstream of

Sample Date	Sample Time	Faecals	E. coli	Wind Direction	Weather
8/07/2019	12:34 PM	210	180	S	Clear
25/07/2019	10:38 AM	110	100	Calm	Clear
5/08/2019	2:05 PM	32	32	Calm	Clear
20/08/2019	11:25 AM	92	92	Ν	Clear
3/09/2019	10:40 AM	8	8	S	Clear
19/09/2019	8:50 AM	200	170	Ν	Clear
1/10/2019	12:10 PM	84	64	S	Overcast
22/10/2019	1:10 PM	58	58	NW	Overcast
1/11/2019	9:49 AM	50	50	SE	Clear
15/11/2019	12:00 AM	120	150	NW	Clear
13/12/2019	9:15 AM	46	31	Calm	Clear
6/01/2020	11:20 AM	62	58	Calm	Clear
28/01/2020	8:40 AM	80	60	Ν	Clear
7/02/2020	10:35 AM	88	72	Calm	Clear
27/02/2020	10:17 AM	100	100	Ν	Clear
12/03/2020	9:36 AM	140	N/A	Ν	Overcast
26/03/2020	8:41 AM	210	N/A	Ν	Cloudy
9/04/2020	8:26 AM	300	N/A	S	Overcast
23/04/2020	8:17 AM	94	N/A	Ν	Rain
7/05/2020	7:49 AM	290	N/A	Ν	Clear
21/05/2020	7:49 AM	46	N/A	Ν	Overcast
04/06/2020	7:51:00 AM	570	N/A	Ν	Cloudy
17/06/2020	8:07:00 AM	950	N/A	Ν	Overcast

the Western Treatment Plant